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ABSTRACT
We argue that transactional distributed database/storage
systems need to view the impossibility theorem in terms of
the contention, abort rate, and throughput, rather than via
the traditional CAP theorem. Motivated by Jim Gray, we
state a new impossibility theorem, which we call the CAT
theorem (Contention-Abort-Throughput). We present ex-
perimental results from the performance of several transac-
tional systems w.r.t. the CAT impossibility spectrum.
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1. INTRODUCTION
NoSQL database systems, in their infancy, supported ba-

sic CRUD (Create Read Update Delete) operations at low
latency, and with high availability and weak consistency.
The weakness of consistency arose from the CAP theorem,
which in its original form stated that of three properties
considered desirable in database systems–consistency, avail-
ability, and partition-tolerance–at most two are achievable
simultaneously [19].

The most practical interpretation of this theorem is that a
system cannot support both (strong) consistency and (high)
availability (or low latency [6]) in a partitionable system. As
a result, many NoSQL systems, such as MongoDB, Riak,
Dynamo, Cassandra [3, 5, 14, 23], all support weak eventual
consistency.

New Consistency Models and New CAPs: A few
years ago, stronger models of consistency such as red-blue [25],
causal+ [26], etc., started to emerge. Recently, at SOSP
2015, there were six papers that supported strong notions
of ACID consistency and transactions. These papers in-
cluded: 1) systems that layered atop unreliable replication
and yet supported transactions with high throughput, e.g.,
Yesquel [7], Callas [29] and Tapir [30], and 2) systems that
supported transactions by relying on strong hardware ab-
stractions, e.g., FaRM [16], RIFL [24] and DrTM [28].
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Alongside classical transactional databases, the emergence
of this new class of transaction-based databases (sometimes
called NewSQL systems) has led to some questioning about
the validity of the CAP theorem. We first clarify that the
CAP theorem, as stated in [19] is correct–it has been for-
mally proved. However, the prevailing discussions in the
community have led some researchers to opine that there is
a gap between the CAP theorem and the practical needs of
today’s systems. Some argue that partitions are relatively
rare, while others say that availability (or latency) is a fuzzy
term and not a“correctness” issue (unlike consistency, which
has strong notions such as linearizability and sequential con-
sistency).

As a result, variants of the CAP theorem have started
to emerge. One of the popular variants is that the P in
CAP ought to stand for performance rather than partition-
tolerance [27]. This new notion has been considered by some
in the community to be applicable to transaction systems.

Limitations of Transactional Systems: In 1996, Jim
Gray, in his famous paper on the dangers of replication [21],
argued that when the contention across transactions increases,
the rate of transaction aborts also increases. Concretely,
Gray showed, via a back of the envelope calculation, that
the rate of transaction aborts increases at least proportional
to: 1) the square of the TPS (throughput) of the system,
and 2) the third to fifth power of the number of actions in
the transaction1. In other words, scaling up the throughput
of a transaction system inherently comes associated with a
higher rate of aborts for transactions.

In a different work, Bailis et. al. proposed the notion of
highly available transactions, or HAT [8]. While practically
useful, this paper did not state an impossibility result, nor
measured the behavior of transactional systems w.r.t. an
impossibility.

Our Contributions: In this paper, we argue that trans-
action based database systems need a more practical ver-
sion of a CAP-like impossibility theorem, one that is fo-
cused on realistic metrics like abort rate and throughput.
We present a new theorem, called the CAT theorem, whose
initials stand for Contention-Abort-Throughput. The theo-
rem and its proof are based on Jim Gray’s classical paper,
but we feel that this theorem needs to be explicitly stated
and reiterated. The CAT theorem neither replaces nor con-
tradicts, but instead sits alongside, both the classical CAP
theorem and existing CAP variants for transactions.

To be practical, we explore implications of the CAT theo-

1In reality, Gray calculated the rate of deadlocks, but this
is a subset of the aborts.



rem for both recent and cloud-based transactional systems.
For recent systems, we approached the authors of three
SOSP 2015 papers on transactions, focusing on the ones that
did not rely on special hardware like RDMA/HTM, in order
to obtain their code. Based on the code that was shared
with us, and the practicalities of getting those systems run-
ning, we were able to perform experiments on one system:
Yesquel. Among the cloud-based transactional database sys-
tems, we selected: i) Microsoft Azure SQL [4] and ii) Ama-
zon RDS (MySQL) [1]. We present results that show the
behavior of these three systems w.r.t. the CAT theorem.
We reiterate here that our results should not be seen as a
reflection on the performance of our selected system, but as
representative of transaction systems in general.

2. THE CAT THEOREM
The CAP theorem was originally intended for CRUD-

supporting NoSQL systems. To warm up discussion lead-
ing to our CAT theorem, we discuss an analogy between the
CRUD/NoSQL world and the transactional/NewSQL world.

First, we argue that abort rates are important to consider
in transaction systems because they are the counterpart of
unavailability in a NoSQL system. In a NoSQL system, un-
availability for a single operation (CRUD) is the lack of an
immediate answer for a read/write. As far as the client is
concerned, the outcome of this abort/unavailability is no
different from a “failed–try again” answer, or a starvation
for that try. The client retries the operation, and after some
retries there is a chance that the operation will succeed.

In the world of a transactional database, an abort of a
transaction has similar semantics. The client is of course
welcome to retry the entire transaction. Because transac-
tions are atomic and indivisible operations (just like any
individual CRUD operations), we observe that these two
scenarios, in the CRUD world and in the transaction world,
are equivalent to each other, as far as the client’s observed
behavior is concerned.

Second, we argue that contention across transactions is
also important to consider. In a CRUD system, an im-
mutable database that supports only read operations can
trivially support strong consistency. Analogously, in a trans-
actional system, if all transactions are read-only, no trans-
actions will ever abort. When there is contention, the abort
rate is likely to rise.

CAT Definitions: Before we state our CAT theorem,
we define the C, A, and T terms:

• Contention (C): The Contention Level of a workload
indicates how much transactions “overlap” with each
other in the objects that they read and write concur-
rently. This is indicative of the likelihood that a trans-
action will abort due to conflicts with other transac-
tions. Section 3 proposes a new metric to measure
contention, and compares against existing metrics.

• Abort Rate (A): This measures the fraction of submit-
ted transactions (attempts) that are aborted.

• Throughput (T): Throughput is measured as transac-
tions per second supported by the system. This is often
reported as TPS, or rate of committed transactions.

We state the CAT theorem as follows:

CAT Theorem: No transactional database can support
arbitrarily high levels of contention while yielding both a zero
abort rate as well as a high throughput.

Proof: The proof follows directly from Jim Gray’s pa-
per [21]. Specifically, equations 12 and 14 in the paper state
that (for both eager and lazy replication) when there is non-
zero contention in the system, the abort rate grows as the
square of the throughput, and thus the abort rate cannot be
zero.

CAT Possibilities: We further illustrate this theorem
intuitively by showing three scenarios that are each possible:

• Scenario-I (C and A): By executing one transaction at
a time, arbitrarily conflicting transactions (C) can be
supported with a zero abort rate (A). However, the
throughput stays very low.

• Scenario-II (C and T): By executing all transactions
concurrently (resulting in high levels of contention, or
C), a high-throughput performance (T) can be achieved.
This is the default approach used by many optimistic
concurrency control techniques in databases today [22].
Such systems need to track the conflicts across trans-
actions, e.g., by using mechanisms like multi-versioned
concurrency control (MVCC) or variants, locks with
deadlock detection, etc. This leads to a non-zero abort
rate for transactions.

• Scenario-III (A and T): In a system with read-only
transactions (zero contention), by executing all trans-
actions concurrently, the highest throughput possible
(T) can be achieved. The abort rate is zero (A).

3. MEASURING CONTENTION
In Section 2, we discussed contention (C) as an important

parameter in the CAT theorem. However, contention is a
non-trivial metric to measure. We explore two ways in which
this measurement can be done. This measurement is not
needed for transactions to proceed, but is useful later in the
paper to show the CAT trade-offs in plots.

To measure contention across transactions, we propose
a new simplified metric called Contention Level. We then
show its relation to the Jim Gray’s metric, and also to the
actual abort probability.

Consider a set of concurrent transactions. Define common
objects among this concurrent set as those objects which are
accessed by at least 2 transactions in the set. Contention
level is defined as the ratio between the number of accesses
to such common objects, and the total number of object ac-
cesses, in that set. This metric lies in the interval [0, 1]. The
intuition is that higher Contention Level implies a higher
likelihood of aborts in a concurrent set of transactions (here
again, like [21] we assume all operations are writes). For
example, consider three concurrent transactions T1, T2 and
T3 accessing objects respectively: {obj1, obj2, obj3}, {obj4,
obj2, obj5}, {obj5, obj6, obj7}. Then the total number of ob-
ject accesses is 9, total number of common object accesses
is 4 (obj2, obj5 with 2 accesses each) and Contention Level
is calculated as 0.44.

We first compare this against a contention metric we de-
rived based on Jim Gray’s model [21]. In this model the
database has D keys, transactions are of length η and there



Figure 1: Contention Level Vs Jim Gray based con-
tention metric.

Figure 2: Contention Level Vs Abort Rate (Brute-
Force method). For c = 2, η varies from 2 to 6; for
c = 3, η varies from 2 to 4. α = 0.9.

are c concurrent transactions. All operations are write op-
erations. A pair of transactions is considered to be contend-
ing if they access at least one object in common. Assuming
uniform selection of keys across transaction operations, and
using combinatorics, we derive Equation 1 as the probabil-
ity of having at least one pair of contending transactions
among a set of c concurrent transactions (this equation did
not appear in [21]).

Pcontention Jim Gray = 1−
∏c
i=1

(
D−(i−1)η

η

)(
D
η

)c (1)

As Figure 1 shows, our Contention Level metric is different
from Equation 1 for keys accessed with Zipf distribution
with α = 0.9 (η = 8, D = 1000, 7 clients, averaged over
100K slots where in a single slot, each client generates a
transaction with probability 0.8)–this is because Jim Gray’s
model does not work for non-uniform access distributions.
To further validate our metric, in Figure 2, we calculate the
abort probability via the brute-force technique based on the
rules for serial equivalence and considering all possible inter-
leavings of transaction operations [13]. This value appears
on the X axis (for several values of c, η). The Y value of
each (x,y) point refers to our Contention Level metric for
the same setting. We observe that while the Contention
Level has an error (i.e., is different from x=y line), the linear
regression line largely runs parallel to the x=y line. This
indicates the error is nearly constant. As a result the rest of
the paper only uses the Contention Level metric.

4. EXPERIMENTS
In order to evaluate the behavior in the C-A-T tradeoff

space of real transaction systems, we evaluate three transac-
tional database systems: a) Yesquel [7] from VMWare/NYU,
b) Microsoft Azure SQL [4] and c) Amazon RDS [1]. We

pick the first system because it uses optimistic concurrency
control, which is aimed at maximizing throughput2. The lat-
ter systems were selected as they are well-established cloud-
based transactional database systems and have publicly avail-
able stable APIs of these two systems.

In reality, we spent a total of about 1 man-year merely at-
tempting to get several optimistic concurrency control sys-
tems up and running with benchmarks like YCSB+T [15].
We have been in intense communication with the authors,
and all were very responsive, however it has been non-trivial
running some of the systems in a sustained way. For exam-
ple, Tapir [30] from U. Washington, and Hyperdex-Warp [17]
from Cornell do not run satisfactorily yet.

Our choice of Yesquel, MS Azure SQL, Amazon RDS and
our results on these systems, are not meant as a reflection on
the performance of these systems. We reiterate that these
results are typical and illustrative of the performance of all
systems in this space (though systems may be different).

Below, we first illustrate the three specific areas in the
tradeoff space outlined in Section 2, namely CA, CT, and
AT. Then we illustrate the effect of increasing contention.

4.1 Experimental Setup
For Yesquel, we run our expriments on EmuLab cluster [2]

with 3 yesquel servers, and up to 7 clients. We wrote a
benchmarking tool in C++, based on YCSB+T [15], a trans-
actional extension of YCSB [12]. Like YCSB, our tool has
two different phases: a) load phase: database is initiated and
1000 key-values are inserted. b) run phase: transactions are
initiated by clients, limited to 1 concurrent transaction per
client; a total of 10K transactions were initiated. For ex-
periments running on MS Azure SQL and Amazon RDS, we
wrote the same benchmarking tool in C# and Java respec-
tively. Also, to connect with the servers, initiate database
and perform queries, we used publicly available APIs.

The length of each transaction is η operations. The selec-
tion of keys in the transaction operation was selected based
on the Zipf distribution with α parameter. Larger values
of transaction length η, Zipf parameter α, and number of
concurrent clients, imply a higher rate of conflicts among
transactions. We explore a variety of transactions including
Write-Only, Read-Only and Read-Write.

4.2 No Concurrent Transactions
Figure 3 shows the changes in abort rate and normal-

ized average TPS by varying the number of clients (TPS is
normalized to the 1 client performance case for each sys-
tem). We varied the number of clients from 1 to 7. The
Zipf coefficient α was set to 0.9 and the transaction length η
was set to 8. The experiments were performed on Yesquel,
Microsoft Azure SQL and Amazon RDS. Our experiments
consist of two types of workloads: i) Write Only transac-
tions, ii) 50% read-50% write transactions, where half the
transactions are read only and the rest are write only. The
trends for the 50%-50% case were similar to Yesquel for MS
SQL and Amazon RDS, and are omitted.

In Figure 4 we present the aggregate throughput for Yesquel
only (MS Azure SQL and Amazon RDS were similar). This
shows that as contention (C) rises, so does abort rate (A)
and throughput (T) falls. While this is expected behavior,
it is important to confirm this relation empirically.

2In comparison, pessimistic concurrency control techniques
would have lower throughput and are thus not explored.



Figure 3: Abort rate (increasing lines) and normal-
ized per client average throughput (decreasing lines)
with increasing number of clients (α = 0.9, η = 8, W
= Write only transactions, WR = 50% Read-50%
Write transactions, Y=Yesquel, A = Amazon RDS,
M = MS SQL).

Figure 4: Aggregate throughput (across all clients)
with increasing number of clients (α = 0.9, η = 8,
transaction type = Write-Only and 50% Read-50%
Write, Yesquel).

The left of Figure 3 shows that for any system, when there
is no contention C (number of clients = 1, thus only 1 trans-
action at a time), the abort rate A is zero. However, Figure 4
shows that in Yesquel, for both types of transactions (Write-
Only and 50% Read - 50% Write) the aggregate throughput
T at single client is low compared to when there is more con-
currency. This single client case illustrates the CA scenario
outlined earlier (Section 2).

4.3 Concurrent Transactions
The traditional way to increase throughput T is to in-

crease the concurrency. Figure 4 shows that, in Yesquel,
with an increase in number of clients, the aggregate through-
put does indeed increase, however, this comes at the expense
of an increased abort rate A (Figure 3). Figure 3 also depicts
that, as number of client increases, the Contention Level in-
creases. With 6 clients, the Contention Level was 0.34 for
Write-Only transactions. The abort rate of the 50% Read-
50% Write transaction was as high as 36% and for Write-
Only transaction it was 58%. This illustrates our second
scenario (CT) outlined in Section 2.

We also noticed that while the aggregate throughput in-
creased with concurrency (Figure 4), the per-client through-
put actually decreased as the number of client was increased
(Figure 3). This illustrates a subtle behavior that we believe
may be true of many transaction systems.

4.4 Zero Contention

Figure 5: Aggregate throughput with increasing
number of clients (α = 0.9, η = 8, transaction type =
Read-Only, Yesquel).

Figure 5 illustrates the AT scenario of the tradeoff space.
When all transactions are Read-Only, there are no con-
tentions, hence the abort rate is zero. Further, the through-
put is significantly higher than when there were writes. For
instance, for Yesquel, at 7 clients, the throughput is almost
3000 TPS, which is significantly higher than the 600 TPS
from 7 clients when transactions contain write operations
only (Figure 4). To illustrate this further, Figure 6 shows
the ratio of the throughput in the Write-Only case to the
Read-Only case of Yesquel–as contention increases (due to
concurrency), the Write-Only transaction scenario degrades
significantly compared to the Read-Only transaction sce-
nario. We also tried Read-Write transaction mixes, and the
conclusions were similar.

Figure 6: Aggregate throughput of Write-Only
transactions (normalized to Read-Only transac-
tions) with increasing number of clients (α = 0.9,
η = 8, Yesquel).

4.5 Effect of Contention due to Transaction
Overlap

Contention can be increased both by increasing concur-
rency and by increasing the “overlap” among transactions.
We explored the former earlier (Figure 3). Here, we hold
the concurrency constant and instead increase the overlap
among transactions.

Figure 7 shows the changes in abort rate and normalized
average TPS (normalized to α = 0.0 for each system) by
varying the Zipf coefficient α from 0.0 to 1.0. There were a
total of 4 clients in the system, η = 8 and all transaction were
Write-Only. As the Zipf coefficient increased, it selected
the most popular keys with high probability, as a result the
Contention Level in the system increased (represented by the
increasing bars in Figure 7). This leads to a higher abort
rate and decreases the TPS.



Figure 7: Abort rate and normalized aggregate
throughput with increasing Zipf coefficient α (4
clients, η = 8, transaction type = Write-Only,
Y=Yesquel, A = Amazon RDS, M = MS SQL).

4.6 Effect of Transaction Length η

Figure 8: Abort rate and normalized average trans-
action per second with increasing transaction length
η ( 4 clients, α = 0.9, Write-Only transactions,
Y=Yesquel, A = Amazon RDS, M = MS SQL).

Figure 8 shows the changes in abort rate and normalized
average TPS (normalized to η = 2 for each system) by vary-
ing the transaction length η from 2 to 16. There were a
total of 4 clients in the system, α = 0.9, and all transactions
were Write-Only. As expected, increased transaction length
leads to significantly higher abort rates. The aggregate and
average throughput drops because transactions take longer
to complete, and thus fewer transactions are being injected
into the system (with a fixed number of clients).

5. RELATED WORK
The CAP theorem was proposed by Eric Brewer [10, 11],

and later formally proved by Gilbert and Lynch [19]. After
over a decade since its introduction, in [9] Brewer argued
that the “2 of 3” formulation of CAP was always mislead-
ing. First, as partitions are rare in modern systems, there is
little reason to forfeit C or A when the system is not parti-
tioned. Second, in a system the choice between C and A can
vary–the choice may be different for different sub-systems,
for different operations, or even for a specific data or user
involved. Our three CAT properties are more continuous
than CAP, which tends to be a binary choice.

In [20] the authors review the CAP theorem and situate it

within the broader context of distributed computing theory.
The authors argue that traditionally there are two types of
systems: i) systems that guarantee strong consistency and
provide best effort availability, and ii) systems that guar-
antee availability and provide best effort consistency. The
paper argues that there exists a third type of system which
sacrifices both consistency and availability and thus they
may achieve a trade-off better suited for the application at
hand.

In [8] authors present the notion of highly available trans-
actions (HAT) where they show that its possible to achieve
many of the transactional guarantees of today’s database
without sacrificing high availability and low latency.

In [18], the authors propose the existence of the three way
fairness-isolation-throughput (FIT) trade-off in distributed
database systems. Here fairness ensures that all transactions
will be treated equally and the system will not prioritize
or delay certain transactions. According to this trade-off, a
distributed database system can pick only two of these three
properties. Here the notion of the throughput is the same
as in our proposed CAT theorem.

In [6], authors explain how the well known CAP theo-
rem has become increasingly misunderstood and misapplied
potentially causing significant harm. Even in the course of
normal operation, a system that strictly follows the CAP
theorem imposes unnecessary constraints. In the paper au-
thors unify CAP and consistency/latency tradeoff into a sin-
gle formulation PACELC : “if there is a partition (P), how
does the system trade off availability and consistency (A and
C); else (E), when the system is running normally in the ab-
sence of partitions, how does the system tradeoff latency (L)
and consistency (C)?”
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7. AVAILABILITY
Our benchmarking tool is siliar to YCSB+T and written

in C++, C# and Java for Yesquel, MS Azure SQL and
Amazon RDS respectively. All the benchmarking tools can
be downloaded from the following link:
https://gitlab.com/shegufta/CAT PROJECT PUBLIC

8. CONCLUSION
Transaction-based database systems require a practical

version of an impossibility theorem. In this paper we pro-
posed a new impossibility theorem called CAT (contention-
abort-throughput), which shows that in a transaction-based
database system, it is impossible to satisfy the three proper-
ties at the same time. We characterized the behavior of both
a recently proposed transactional database system and two
cloud-based transactional database systems in the C-A-T
trade-off space. Our core results are inspired by Jim Gray’s
work, but we believe this theorem and its implications for
developers and programmers, need to be stated explicitly.



We hope that our paper encourages researchers to envision
CAP-like variants for transactional systems. The interplay
of CAT and CAP theorems is also an interesting topic to
explore. The CAT theorem might also have applications in
transactional shared-memory models.
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