
Service Fabric: A Distributed Platform for Building
Microservices in the Cloud

Gopal Kakivaya
∗
, Lu Xun

∗
, Richard Hasha

∗
, Shegufta Bakht Ahsan

†
, Todd Pfleiger

∗
, Rishi Sinha

∗
, Anurag

Gupta
∗
, Mihail Tarta

∗
, Mark Fussell

∗
, Vipul Modi

∗
, Mansoor Mohsin

∗
, Ray Kong

∗
, Anmol Ahuja

∗
, Oana

Platon
∗
, Alex Wun

∗
, Matthew Snider

∗
, Chacko Daniel

∗
, Dan Mastrian

∗
, Yang Li

∗
, Aprameya Rao

∗
, Vaishnav

Kidambi
∗
, Randy Wang

∗
, Abhishek Ram

∗
, Sumukh Shivaprakash

∗
, Rajeet Nair

∗
, Alan Warwick

∗
, Bharat S.

Narasimman
∗
, Meng Lin

∗
, Jeffrey Chen

∗
, Abhay Balkrishna Mhatre

∗
, Preetha Subbarayalu

∗
, Mert Coskun

∗
,

Indranil Gupta
†

†
: University of Illinois at Urbana Champaign.

∗
: Microsoft Azure

ABSTRACT
We describe Service Fabric (SF), Microsoft’s distributed platform

for building, running, and maintaining microservice applications

in the cloud. SF has been running in production for 10+ years,

powering many critical services at Microsoft. This paper outlines

key design philosophies in SF. We then adopt a bottom-up approach

to describe low-level components in its architecture, focusing on

modular use and support for strong semantics like fault-tolerance

and consistency within each component of SF. We discuss lessons

learned, and present experimental results from production data.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-
tolerant systems and networks; Distributed architectures; Cloud
computing;

KEYWORDS
Microservices, Distributed Systems, Production Systems, Failure

Detection, Scheduling

ACM Reference Format:
Gopal Kakivaya

∗
, Lu Xun

∗
, Richard Hasha

∗
, Shegufta Bakht Ahsan

†
, Todd

Pfleiger
∗
, Rishi Sinha

∗
, Anurag Gupta

∗
, Mihail Tarta

∗
, Mark Fussell

∗
, Vipul

Modi
∗
, Mansoor Mohsin

∗
, Ray Kong

∗
, Anmol Ahuja

∗
, Oana Platon

∗
, Alex

Wun
∗
, Matthew Snider

∗
, ChackoDaniel

∗
, DanMastrian

∗
, Yang Li

∗
, Aprameya

Rao
∗
, Vaishnav Kidambi

∗
, RandyWang

∗
, Abhishek Ram

∗
, Sumukh Shivaprakash

∗
,

Rajeet Nair
∗
, Alan Warwick

∗
, Bharat S. Narasimman

∗
, Meng Lin

∗
, Jeffrey

Chen
∗
, Abhay Balkrishna Mhatre

∗
, Preetha Subbarayalu

∗
, Mert Coskun

∗
,

Indranil Gupta
† †

: University of Illinois at Urbana Champaign.
∗
: Microsoft

Azure . 2018. Service Fabric: A Distributed Platform for Building Microser-

vices in the Cloud. In EuroSys ’18: Thirteenth EuroSys Conference 2018,
April 23–26, 2018, Porto, Portugal. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3190508.3190546

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00

https://doi.org/10.1145/3190508.3190546

1 INTRODUCTION
Cloud applications need to operate at scale across geographical

regions, and offer fast content delivery as well as high resource

utilization at low cost. The monolithic design approach for building

such cloud services makes them hard to build, to update, and to

scale. As a result modern cloud applications are increasingly being

built using a microservices architecture. This philosophy involves

building smaller and modular components (the microservices), con-

nected via clean APIs. The components may be written in differ-

ent languages, and as the business need evolves and grows, new

components can be added and removed seamlessly, thus making

application lifecycle management both agile and scalable.

The loose coupling inherent in a microservice-based cloud ap-

plication also helps to isolate the effect of a failure to only indi-

vidual components, and enables the developer to reason about

fault-tolerance of each microservice. A monolithic cloud applica-

tion may have disparate parts affected by a server failure or rack

outage, often in unpredictable ways, making fault-tolerance analy-

sis quite complex. Table 1 summarizes these and other advantages

of microservices.

Monolithic design Microservice-based design
Application complexity Complex Modular

Fault-tolerance Complex Modular

Agile development No Yes

Communication between components NA RPCs

Easily scalable No Yes

Easy app lifecycle management No Yes

Cloud ready No Yes

Table 1: Monolithic Vs. Microservice Applications.

In this paper we describe Service Fabric, Microsoft’s platform to

support microservice applications in cloud settings. Service Fabric

(henceforth denoted as SF) enables application lifecycle manage-

ment of scalable and reliable applications composed of microser-

vices running at very high density on a shared pool of machines,

from development to deployment to management.

Today’s SF system is a culmination of over a decade and a half

of design and development. SF’s design started in the early 2000’s,

and over the last decade (since 2007), many critical production

systems inside Microsoft have been running atop SF. These include

Microsoft Azure SQL DB [15], Azure Cosmos DB [11], Microsoft

Skype [77], Microsoft Azure Event Hub [12], Microsoft Intune [60],

Microsoft Azure IoT Suite [14], Microsoft Cortana [59] and others.

Today, Microsoft Azure SQL DB running on SF hosts 1.82 Million

DBs containing 3.48 PB of data, and runs on over 100 K machines

https://doi.org/10.1145/3190508.3190546
https://doi.org/10.1145/3190508.3190546


EuroSys ’18, April 23–26, 2018, Porto, Portugal Kakivaya et al.

across multiple geo-distributed datacenters. Azure Cosmos DB runs

on over 2 million cores and 100 K machines. The cloud telemetry

engine on SF processes 3 Trillion events/week. Overall, SF runs 24×7

in multiple clusters (each with 100s to many 1000s of machines),

totaling over 160 K machines with over 2.5 Million cores.

Driven by our production use cases, the architecture of SF follows

five major design principles:

• Modular and Layered Design of its individual components,

with clean APIs.

• Self-* Properties including self-healing and self-adjusting prop-
erties to enable automated failure recovery, scale out, and scale

in. Self-sufficiency, meaning no external dependencies on ex-

ternal systems or storage.

• Fully decentralized operation avoids single points of con-

tention and failure, and accommodates microservice applica-

tions from small groups to very large groups of VMs/containers.

• Strong Consistency both within and across components, to

prevent cascades of inconsistency.

• Support for Stateful Services such as higher-level data-structures
(e.g., dictionaries, queues) that are reliable, persistent, efficient,

and transactional.

Service Fabric is the only microservice system that meets all the

above principles. Existing systems provide varying levels of support

for microservices, the most prominent being Nirmata [64], Akka [3],

Bluemix [21], Kubernetes [51], Mesos [44], and AWS Lambda [7].

SF is more powerful: it is the only data-aware orchestration system

today for stateful microservices. In particular, our need to support

state and consistency in low-level architectural components drives

us to solve hard distributed computing problems related to failure

detection, failover, election, consistency, scalability, and manage-

ability. Unlike these systems, SF has no external dependencies and

is a standalone framework. Section 9 expands on further differences

between SF and related systems.

Service Fabric was built over 16 years, by many (over 100 core)

engineers. It is a vast system containing several interconnected and

integrated subsystems. It is infeasible to compress this effort into

one paper. Therefore, instead of a top-down architectural story, this

paper performs a deep dive on selected critical subsystems of SF,

illustrating via a bottom-up strategy how our principles drove the

design of key low-level building blocks in SF.

The contributions of this paper include:

• We describe design goals, and SF components that: detect fail-

ures, route virtually among nodes, elect leaders, perform failover,

balance load, and manage replicas.

• We touch on higher-level abstractions for stateful services (Re-

liable Collections).

• We discuss lessons learnt over 10+ years.

• We present experimental results from real datasets that we

collected from SF production clusters.

It is common in industry to integrate disparate systems into a

whole. We believe there is a desperate need in the systems commu-

nity for a paper that reveals insight into how different subsystems

can be successfully built and integrated under cohesive design prin-

ciples.

2 MICROSERVICE APPROACH
The concepts underlying microservices have been around for many

years, from object-oriented languages, to Service Oriented Ar-

chitectures (SOA). Many companies (besides Microsoft), rely on

a microservice-based approach. Netflix has used a fine-grained

SOA [85] for a long time to withstand nearly two billion edge API

requests per day [82].

Figure 1: A Microservice-based Application. a) Each colored/tiled
hexagon type represents a microservice, and b) Its instances can be deployed
flexibly across VMs.

SF provides first-class support for full Application Lifecycle Man-

agement (ALM) of cloud applications, from development, deploy-

ment, daily management, to eventual decommissioning. It provides

system services to deploy, upgrade, detect, and restart failed ser-

vices; discover service location; manage state; and monitor health.

SF clusters are today created in a variety of environments, in private

and public clouds, and on Linux and Windows Server containers.

If such microservices were small in number, it may be possible

to have a small team of developers managing them. In production

environments, however, there are hundreds of thousands of such

microservices running in an unpredictable cloud environment [17,

18, 35, 36, 87]. SF is an automated system that provides support for

the complex task of managing these microservices.

Building cloud applications atop SF (via microservices) affords

several advantages:

(1) ModularDesign andDevelopment: By isolating the func-
tionality and via clean APIs, services have well-defined in-

puts and outputs, which make unit testing, load testing, and

integration testing easier.

(2) Agility: Individual teams that own services can indepen-

dently build, deploy, test, and manage them based on the

team’s expertise or what is most appropriate for the prob-

lem to be solved. This makes the development process more

agile and lends itself to assigning each microservice to small

nimble teams.

SF provides rolling upgrades, granular versioning, packag-

ing, and deployment to achieve faster delivery cycles, and

maintain up-time during upgrades. Build and deployment

automation along with fault injection allows for continuous

integration and deployment.

(3) Scalability: A monolithic application can be scaled only

by deploying the entire application logic on new nodes

(VMs/containers). As Fig. 1 shows, in SF only individual



Service Fabric: A Distributed Platform for Building Microservices in the Cloud EuroSys ’18, April 23–26, 2018, Porto, Portugal

microservices that need to scale can be added to new nodes,

without impacting other services.

This approach allows an application to scale as the number

of users, devices and content grows, by scaling the cluster on

demand. Incremental deployment is done in a controlled way:

one at a time, or in groups, or all at once, depending on the

deployment stage (integration testing, canary deployments,

and production deployments).

(4) Resource Management: SF manages multiple applications

running on shared nodes, scaling themselves continuously,

because the workloads change dynamically all the time. The

components of SF that this paper fleshes out help keep nodes’

load balanced, route messages efficiently, detect failures

quickly and without confusion, and react to failures quickly

and transparently.

(5) Support for State: SF provides useful abstractions for state-
ful services, namely Reliable Collections, a data-structure

that is distributed, fault-tolerant, and scalable.

2.1 Microservice Application Model in Service
Fabric

Figure 2: Service Fabric Application Model. An application consists of
N services, each of them with their own Code, Config. and Data.

In Service Fabric, an application is a collection of constituent mi-

croservices (stateful or stateless), each of which performs a complete

and standalone function and is composed of code, configuration and

data. This is depicted in Fig. 2. The code consists of the executable

binaries, the configurations consist of service settings that can be

loaded at run time, and the data consists of arbitrary static data

to be consumed by the microservice. A powerful feature of SF is

that each component in the hierarchical application model can be

versioned and upgraded independently.

2.2 Service Fabric and Its Goals
Asmentioned earlier, Service Fabric (SF) provides first-class support

for full Application Lifecycle Management (ALM) of microservice-

based cloud applications, from development to deployment, daily

management, and eventual decommissioning. The two most unique

goals of SF are:

i) Support for Strong Consistency:A guiding principle is that

SF’s components must each offer strong consistency behaviors.

Consistency means different things in different contexts: strong

consistent failure detection in the membership module vs. ACID in

Reliable Collections.

We considered two prevalent philosophies for building consistent

applications: build them atop inconsistent components [2, 88, 89],

or use consistent components from the ground up. The end to end

principle [76] dictates that if the performance is worth the cost

for a functionality then it can be built into the middle. Based on

our use case studies we found that a majority of teams needing SF

had strong consistency requirements, e.g., Microsoft Azure SQL

DB, Microsoft Business Analytics Tools etc., all rely on SF while

executing transactions. If consistency were instead to only be built

at the application layer, each distinct application will have to hire

distributed systems developers, spend development resources, and

take longer to reach production quality.

Supporting consistency at each layer: a) allows higher layer de-

sign to focus on their relevant notion of consistency (e.g., ACID

at Reliable Collections layer), and b) allows both weakly consis-

tent applications (key-value stores such as Azure Cosmos DB) and

strongly consistent applications (DBs) to be built atop SF–this is

easier than building consistent applications over an inconsistent

substrate. With clear responsibilities in each component, we have

found it easier to diagnose livesite issues (e.g., outages) by zeroing

in on the component that is misbehaving, and isolating failures and

root causes between platform and application layers.

ii) Support for Stateful Microservices: Besides the stateless
microservices (e.g., protocol gateways, web proxies, etc.), SF sup-

ports stateful microservices that maintain a mutable, authoritative

state beyond the service request and its response, e.g., for user ac-

counts, databases, shopping carts etc. Two reasons to have stateful

microservices along with stateless ones are: a) The ability to build

high-throughput, low-latency, failure-tolerant online transaction

processing (OLTP) services by keeping code and data close on the

same machine, and b) To simplify the application design by remov-

ing the need for additional queues and caches. For instance, SF’s

stateful microservices are used by Microsoft Skype to maintain im-

portant state such as address books, chat history, etc. In SF stateful

services are implemented via Reliable Collections.

2.3 Use Cases: Real SF Applications
Since Service Fabric was made public in 2015 several external user

organizations have built applications atop it. In order to illustrate

how global-scale applications can be built using microservices, we

briefly describe four of these use cases. Our use cases show: a) how

real microservice applications can be built using SF; b) how the

microservice approach was preferable to users than the monolithic

approach; and c) how SF support for state and consistency (in

particular Reliable Collections) are invaluable to developers. (This

section can be skipped by the reader without loss in continuity.)

Tutorials are available to readers interested in learning how-to

build microservice applications over Service Fabric–please see [62].

I. BMW is one of the largest luxury car companies in the world.

Their in-vehicle app BMW Connected [22] is a personal mobility

companion that learns a user’s mobility patterns by combining

machine-learned driver intents, real-time telemetry from devices,

and up-to-date commute conditions such as traffic. This app re-

lies on a cloud service that was built using SF and today runs on

Microsoft Azure, supporting 6 million vehicles worldwide.

The SF application is called BMW’sOpenMobility Cloud (OMC) [23,
29]. It needs to be continually updated with learned behaviors and

from traffic commute update streams. OMC consists of several ma-

jor subsystems. Among them, we will focus on the core component



EuroSys ’18, April 23–26, 2018, Porto, Portugal Kakivaya et al.

Figure 3: Major Subsystems of Service Fabric. NS = Naming Service, PLB = Placement and Load Balancer.

called the Context and Profile Subsystem (C&P). C&P consists of

five key SF microservices:

i) Context API Stateless Service: Non-SF components commu-

nicate with the C&P via this service, e.g., mobile clients can

create/change locations and trips.

ii) Driver Actor Stateful Service: This per-driver stateful ser-
vice tracks the driver’s profile, and generates notifications such

as trip start times. It receives data from five sources: sync

messages from the Context API service, a stream of current lo-

cations of the driver (from Location Consumer service), learned

destinations and predicted trips (from MySense machine learn-

ing service), deleted anonymous user IDs (from User Delete

service), and trip time estimates (from ETA Queue service).

iii) Location Consumer Stateless Service: Each mobile client

sends a stream of geo-locations to the Microsoft Azure Event

Hub, pulled by the Location Consumer service and fed to the

appropriate driver actor.

iv) Commute Service: The Commute service takes geo-location

and trip start and end points, and then communicates with an

external service to generate drive time.

v) ETA Queue Stateful Service: This decouples driver actors
from the Commute server and allows asynchronous communi-

cation between the two services.

The use of SF makes BMW’s C&P Subsystem highly-available,

fault-tolerant, agile, and scalable. For instance, when the number of

active vehicles increases, the Context API service and Driver actor

services are scaled out in size. When the number of moving vehicles

changes, the Location Consumer and ETA Queue stateful services

can be scaled in size. The remaining services remain untouched. SF

helps to optimize resource usage so that incurred dollar costs of

using Microsoft Azure are minimized.

II. Mesh Systems [30, 58] is an 11-year old company that provides

IoT software and services for enterprise IoT customers. They started

out with a monolithic application that was too complex, and were

unable to accommodate the needs of their growing business. This

previous system also underutilized their cluster.

Mesh Systems’s SF application achieves high resource utilization,

and scalability by leveraging Reliable Collections. One of their needs

was to scale out the payload processing independent of notifications,

and it was a good match with SF’s ability to scale out individual

microservices. Their SF application also leverages local state to

improve performance, e.g., to minimize the load on Microsoft Azure

SQL DB, they implemented an SQL broker that periodically caches

the most heavily-accessed metadata tables.

III. Quorum Business Solutions [68, 69] is a SCADA company

that collects and manages data from field-operations platforms on

tens of thousands of wells across North America. Their implementa-

tion on SF uses actors that reliably collect and process data because

they are stateful, a stateless gateway service for auto-scalability,

and a stateful batch aggregator service that monitors actors them-

selves. They implement interactions with third parties (SQL DB,

Redis) via notification and retry microservices in SF.

IV. TalkTalk TV [31, 81] is one of the largest cable TV providers

in United Kingdom. It delivers the latest TV and movie content to a

million monthly users, via a variety of devices and smart TVs. Their

SF application is used to encode movie streams before delivery

to the customer, and uses stateful services, structured in a linear

sequence: record encoding requests, initiate encoding processes,

and track these processes. A stateless gateway interacts with clients.

3 SERVICE FABRIC: KEY COMPONENTS

Figure 4: Federation and Reliability Subsystems: Deep-Dive.

Service Fabric (SF) is composed of multiple subsystems, relying

on each other modularly via clean APIs and protocols. Fig. 3 depicts

how they are stacked–upper subsystem layers leverage lower layers.

Given space constraints, this paper largely focuses on SF’s most

unique components, shown in Fig. 4. These lie in two subsystems:

Federation and Reliability.



Service Fabric: A Distributed Platform for Building Microservices in the Cloud EuroSys ’18, April 23–26, 2018, Porto, Portugal

The Federation Subsystem (Sec. 4) forms the heart of SF. It solves

critical distributed systems problems like failure detection, a consis-

tent ring with routing, and leader election. The Transport Subsystem
underneath provides secure node-to-node communication.

Built atop the Federation Subsystem is the Reliability Subsystem
(Sec. 5), which provides replication and high availability. Its com-

ponents are the Failover Manager (FM), Failover Manager Master

(FMM), the Placement and Load Balancer (PLB), and replication

protocols. This helps create distributed abstractions named Reliable

Collections (Sec. 6).

Other SF subsystems not detailed in this paper include the Man-

agement Subsystem which provides full application and cluster

lifecycle management via the Cluster Manager, Health Manager,

and Image Store. The Communication Subsystem allows reliable

service discovery via the Naming Service. The Testability Subsys-

tem contains a Fault Injection Service. Hosting and Activation

Subsystems manage other parts of the application lifecycle.

4 FEDERATION SUBSYSTEM
We describe SF’s ring, failure detection, consistent routing, and

leader election.

4.1 Basic SF-Ring
Nodes in SF are organized in a virtual ring, which we call SF-Ring.
This consists of a virtual ring with 2

m
points (e.g.,m = 128 bits).

Nodes and keys are mapped on to a point in the ring. A key is owned

by the node closest to it, with ties won by the predecessor. Each

node keeps track of multiple (a given number of) its immediate

successor nodes and predecessor nodes in the ring–we call this the

neighborhood set. Neighbors are used to run SF’s membership and

failure detection protocol, which we describe next.

Nodes also maintain long-distance routing partners. Section 4.3

will later outline these and consistent routing.

4.2 Consistent Membership and Failure
Detection

Membership and failure detection in SF relies on two key design

principles:

• Strongly ConsistentMembership: All nodes responsible for
monitoring a node X must agree on whether X is up or down.

When used in the SF-Ring, this entails a consistent neighborhood,
i.e., all successors/predecessors in the neighborhood of a node

X agree on X’s status.

• Decoupling FailureDetection fromFailureDecision: Fail-
ure detection protocols can lead to conflicting detections. To

mitigate this, we decouple the decision of which nodes are failed

from the detection itself.

4.2.1 Lease-based Heartbeating. We first describe our heartbeat-

ing protocol in general terms, and then how it is used in SF-Ring.

Monitors and Leases: Heartbeating is fully decentralized. Each

node X is monitored by a subset of other nodes, which we call its

monitors. Node X periodically sends a lease renewal request (LR,
heartbeat message with unique sequence number) to each of its

monitors. When a monitor acknowledges (LRack ), node X is said to

obtain a lease, and the monitor guarantees not to detect X as failed

for the leasing period. The leasing period, labeled Tm , is adjusted

adaptively based on round trip time and some laxity, but a typical

value is 30 s. To remain healthy, node X must obtain acks (leases)

from all of its monitors. This defines strong consistency. If node

X fails to renew any of its leases from its monitors, it considers

removing itself from the group. If a monitor misses a heartbeat from

X, it considers marking X as failed. In both these cases however,

the final decision needs to be confirmed by the arbitrator group

(described in Sec. 4.2.2).

Lease renewal is critical, but packet drops may cause it to fail.

To mitigate this, if node X does not receive LRack within a timeout

(based on RTT), it re-sends the lease message LR until it receives

LRack . Resends are iterative.

Symmetric Monitoring in SF-Ring: The monitors of a node are

its neighborhood (successors and predecessors in the ring). Neigh-

borhood monitoring relationships are purely symmetric. When two

nodes X and Y are monitoring each other, their lease protocols are

run largely independently, with a few exceptions. First, if X fails

to renew its own lease within the timeout, it denies any further

lease requests from Y (since X will leave the group soon anyway).

Second, if X detects Y as having failed, X stops sending lease renew

requests to Y. Such cases have the potential to create inconsisten-

cies, however our use of the arbitrator group (which we describe

next) keeps the membership lists consistent.

4.2.2 Using the Arbitrator Group to Decouple Detection
fromDecision. Decoupling FailureDetection fromDecision:
Decentralized failure detection techniques carry many subtleties

involving timeouts, indirection, pinging, etc. Protocols exist that

give eventual liveness properties (e.g., [32, 83]), but in order to scale,

they allow inconsistent membership lists. However, our need is to

maintain a strongly consistent neighborhood in the ring, and also

reach decisions quickly.

To accomplish these goals, we decouple decisions on failures

from the act of detection. Failure detection is fully decentralized

using Sec. 4.2.1’s lease-based heartbeating. For decisions, we use a

lightweight arbitrator. The arbitrator does not help in detecting fail-

ures (as this would increase load), but only in affirming or denying

decisions.

Arbitrator: The arbitrator acts as a referee for failure detections,
and for detection conflicts. For speed and fault-tolerance, the ar-

bitrator is implemented as a decentralized group of nodes that

operate independent of each other. When any node in the system

detects a failure, before taking actions relevant to the failure, it

needs to obtain confirmation from a majority (quorum) of nodes in

the arbitrator group.

Failure reporting to/from an arbitrator node works as follows.

Suppose a node X detects Y as having failed. X sends a fail(Y)

message to the arbitrator. If the arbitrator already marked X as

failed, the fail(Y) message is ignored, and X is again asked to leave

the group. Otherwise, if this is the first failure report for Y, it is

added to a recently-failed list at the arbitrator. An accept(fail(Y))

message is sent back to X within a timeout based on RTT (if this

timeout elapses, X itself leaves the ring). The accept message also



EuroSys ’18, April 23–26, 2018, Porto, Portugal Kakivaya et al.

carries a timer value called To , so that X can wait for To time and

then take actions w.r.t. Y (e.g., reclaim Y’s portion of the ring).

When Y next attempts to renew its lease with X (this occurs

within Tm time units after X detects it), X either denies it or does

not respond. Y sends a fail(X) message to the arbitrator. Since Y is

already present in the recently-failed list at the arbitrator, Y is asked

to leave the group. (If this exchange fails, Y will leave anyway as it

failed to renew its lease with X.) If on the other hand, Y’s lease re-

newal failed because X was truly failed, then the arbitrator sends an

accept(fail(X)) message to Y. We set: To = Tm + laxity - (time since

first detection). If this is the first detection, To = Tm + laxity. Here,
laxity is typically 30 s, generously accounts for network latencies

involved in arbitrator coordination, and independent of Tm . As all

timeouts are large (tens of seconds), loose time synchronization

suffices.

In SF-Ring: Inside SF-Ring, failure detections occur in the neigh-

borhood, to maintain a consistent neighborhood. If node X suspects

a neighbor (Y), it sends a fail(Y) to the arbitrator, but waits for To
time after receiving the accept(.) message before reclaiming the

portion of Y’s ring. Any routing requests (Section 4.3) received

meanwhile for Y will be queued, but processed only after the range

has been inherited by Y’s neighbors.

Arbitrator State: In the arbitrator group, each arbitrator keeps

relatively small information, such as the recently-failed list contain-

ing recent failure reports and decisions. Entries in this list time out

after Tm time units. When a new arbitrator joins the group, for the

first Tm seconds it rejects all failure requests (this is a conservative

approach). After quick initialization it moves to normal operations

as described earlier. This prevents: a) decisions by a new arbitrator

conflicting with those by existing arbitrators, and b) spurious nodes,

i.e., failed nodes continuing to persist in membership lists (a known

issue in distributed membership protocols [83]). This ensures that

a detected node leaves before being forgotten.

Conflict Resolution: The arbitrator group helps decide on both

simple and complex conflicts. A common simple conflict is two

nodes detecting each other as failed–the first received fail(.) message

(or the first one to win quorum among arbitrators) wins in this case.

An alternate variant of our arbitrator pings both such nodes and if

they are healthy heals their membership lists and allows them to

stay.

Network congestion or partitions may result in multiple nodes

detecting each other as failed. In traditional DHTs like Chord [79],

Pastry [75], this causes inconsistent membership lists. In NoSQL

systems like Cassandra [52], it can lead to inconsistency in the ring.

SF’s arbitrator group essentially automates the conflict resolution

procedure.

The decoupling of detection and decision helps the arbitrators

catch and nip complex cascading detections. For instance, consider
a node X that fails to renew its lease and thus voluntarily leaves.

If another node Y immediately happens to send a lease request to

X (before Y has been informed about X), Y will not receive an ack

and will also leave–this process can cascade and result in many

healthy nodes leaving. SF’s arbitrators catch the first detection, and

immediately make the neighborhood consistent, thus stopping the

cascade early.

Vs. Related Work: SF’s leases are comparable to heartbeat-style

failure detection algorithms from the past (e.g., [83]). The novel idea

in SF is to use lightweight arbitrator groups to ensure membership

stays consistent (in the ring neighborhood). This allows the mem-

bership, and hence the ring, to scale to whole datacenters. Without

the arbitrators, distributed membership will have inconsistencies

(e.g., gossip, SWIM/Serf [32]), or one needs a heavyweight central

group (e.g., Zookeeper [45], Chubby [24]) which has its own issues.

Stronger consistent membership like virtual synchrony [19, 20] do

not scale to datacenters.

4.3 Full SF-Ring and Consistent Routing
We describe the full SF-Ring, expanding on the basic design from

Section 4.1. SF-Ring is a distributed hash table (DHT). It provides a

seamless way of scaling from small groups to large groups. SF-Ring

was developed internally [42, 43, 47, 48] in Microsoft, in the early

2000s, concurrent with the emergence of P2P DHTs like Pastry,

Chord [75, 79], and others [39, 40, 57, 70]. We describe our original

design, and inline evolutionary changes that occurred over time.

SF-Ring is unique in the following five ways (I-V):

I) Routing Table entries are bidirectional and symmetric: SF-
Ringmaintains Routing Partners (in Routing Tables) at exponentially
increasing distances in the ring. As shown in Fig. 5, routing partners

are maintained both clockwise and anticlockwise. That is, the ith

clockwise routing table entry is the node whose ID is closest to

the key (n + 2i )mod(2m ), while the ith anticlockwise routing table

entry is the node with ID closest to (n − 2
i )mod(2m ).

Due to the bidirectionality, most routing partners are symmetric.
This speeds up both spread of failure information and routing. P2P

DHTs like Chord maintain exponentially far routing entries, but

are unidirectional and largely not symmetric. Symmetric links lead

to efficient transfer of data between nodes, fast spreading of failure

information, and fast updating of routing tables after node churn
1
.

II) Routing is bidirectional: When forwarding a message for a

key, a node searches its routing table for the node whose ID is

closest to the key, and forwards it. This is possible only because the

routing tables are bidirectional and symmetric. This greedy routing

is essentially a distributed version of binary search. This approach:

i) allows the message to move both clockwise and anticlockwise, al-

ways taking the fastest path, and ii) avoid routing loops. In practice

we noticed that once a message starts routing it tends to maintain

its direction (clockwise or anticlockwise), until the last few hops,

when directional changes may occur.

Compared to traditional DHTs like Chord which use clockwise

routing, SF-Ring’s bidirectional routing: i) routes messages faster, ii)

provides more routing options when routing table entries are stale

or empty, iii) spreads routing load more uniformly across nodes,

and iv) due to the distributed binary search, avoids routing loops

even under stale routing tables.

1
Symmetry may be violated in a small fraction of cases when another node is closer

to (n − 2
i )mod (2m ), but our advantages still hold.



Service Fabric: A Distributed Platform for Building Microservices in the Cloud EuroSys ’18, April 23–26, 2018, Porto, Portugal

Figure 5: Routing Table of node 64. The ring has 2m=8 points. Numbered
dots represent active nodes.

Changes to Routing over the Years: Once a building block is

designed, its usage evolves over the years based on needs. SF-Ring’s

routing is no exception. Originally all messages were routed. Today,

SF-Ring routing is used for: a) discovery routing when a node starts

up, and b) routing to virtual addresses. After discovery when a

source knows the destination’s IP address, it communicates directly.

III) Routing Tables are eventually convergent: SF nodes use a
chatter protocol to continuously exchange routing table informa-

tion. Due to the symmetric nature of routing relationships, failure

information propagates quickly leading to fast and eventual con-

vergence of affected routing table entries.

When a node joins the ring, it goes through a transitional phase

during which it initializes its routing tables, acquires tokens (de-

scribed soon), but does not yet route messages. Once it finishes

transitioning it starts routing messages.

In the chatter protocol, nodes periodically send livenessmessages

to their routing table partners. To efficiently use bandwidth, liveness

messages also allow piggybacking of application messages that

are about to be sent to the partner. Liveness messages contain

information about the node, instance ID (distinguishes multiple

rejoins by the same node), phase (e.g., transitioning or operational),

weight (reputation based on uptime, etc.), and a freshness value

(which decays with time, like in ad-hoc routing protocols [46, 66]).

The chatter protocol provides eventual consistency for the long

distance neighbors (routing partners). A key result from the SF

effort is that strongly consistent applications can be supported

at scale by combining strong membership in the neighborhood

(Section 4.2) with weakly consistent membership across the ring.

Literature often equates strongly consistent membership with vir-

tual synchrony [19], but this approach has scalability limits [20].

Changes to Partial Membership over the Years: SF microser-

vices operate in a wide range of scales, from a few nodes to many

1000s of nodes. Microservices also need to scale out and scale in

during their lifetime. To support this, today SF-Ring sets a (cus-

tomizable) upper bound on the number of entries in the routing

table. If the number of nodes is smaller than this bound, the rout-

ing tables (eventually but quickly) capture full information about

all nodes; this makes routing fast and take O(1) hops. If the num-

ber of nodes is higher, routing tables come into effect, creating an

O(loд(N )) lookup cost without blowing up memory.

This design decision allows SF-Ring to move seamlessly between

partial membership and full membership. In comparison, NoSQL

ring-based DHTs like Cassandra [52] and Dynamo [33] rely on full

O(N )membership. This makes them cumbersome at large scale and

under churn–the overhead of maintaining correct membership lists

outweighs benefits of 1 hop routing. In Cassandra, admins need

to use nodetool [1] to manually verify that membership lists are

correct. SF-Ring automates all membership management.

IV) Decoupled Mapping of Nodes and Keys: Nodes and objects
(services) are mapped onto the ring in a way that is decoupled

from the ring: i) nearby nodes on the ring are selected preferably

from different failure domains (improving fault-tolerance), and

ii) services are mapped in a near-optimal and load balanced way

(Sec. 5.3), and not hashed.

V) Consistent Routing Tokens: Each SF node owns a routing
token, a portion of the ring whose keys it is responsible for. The

SF-Ring protocol ensures two consistency properties: i) always safe:
there is no overlap among tokens owned by nodes, and ii) eventually
live: every token range is eventually owned by at least one node.

When the first SF node bootstraps, it owns the entire token space.

Thereafter, tokens are created as follows: two immediate neighbors

split the ring segment between them at exactly the half-way point.

Upon churn, a node join/leave protocol automatically transfers

tokens among nodes. NoSQL systems like Cassandra [52] also use

routing tokens, but may need manual involvement to ensure cor-

rectness (via nodetool). In SF-Ring, this checking is automatic and

continuous.

When a node leaves, its successor and predecessor split the range

between them halfway. If a node X’s immediate successor Y fails,

then X and its new successor Z will split the ring segment halfway

between X and Z. In the common case this splitting incurs no

communication between X and Z.

If all nodes satisfy token liveness and safety conditions, SF-Ring

routing will eventually succeed. If the liveness condition is not yet

true (e.g., no node owns a token containing destination ID), routing

messages are queued.

Vs. Related Work: SF’s consistent ring was invented internally

around 2002, concurrent with the first DHTs like Chord [79] and

Pastry [75]. While SF was being implemented, several other DHTs

came out that used bidirectional routing, e.g., Kademlia [57]. While

we could conceivably go back and try replacing SF-Ring with some-

thing like Kademlia, re-integration is hard and SF-Ring has been

running successfully in production for a decade (if it ain’t broke,

don’t fix it!).

4.4 Leader Election
SF-Ring’s leader election protocol builds atop the combination of

the ring, routing, and consistent neighborhood just described. For

any key k in the SF-Ring, there is a unique leader: the node whose

token range contains k (this is unique due to the safety and liveness

of routing tokens). Any node can contact the leader by routing to

key k . Leader election is thus implicit and entails no extra messages.

In cases where a leader is needed for the entire ring we use k = 0

(e.g., FMM in Sec. 5.1).



EuroSys ’18, April 23–26, 2018, Porto, Portugal Kakivaya et al.

5 RELIABILITY SUBSYSTEM
The Reliability Subsystem is in charge of replication, load balancing,

and high availability. Objects in SF are replicated at a primary

node and multiple secondary nodes. The replication subsystem’s

Replicator component uses passive replication: clients communicate

with the primary, which multicasts updates to secondaries. The

Reliability Subsystem contains three major components: Failover

Manager (FM), Naming, and Placement and Load Balancer (PLB).

5.1 The Failover Manager (FM)
This stateful SF service maintains a global view of all replica groups.

The global view includes status of all nodes in the cluster, list of cur-

rent applications and services, list of replicas and their placement,

etc.

The FM manages creation of services, upgrades, etc. It works

closely with daemons on each node called Reconfiguration Agents

(RAs), which continually collect the node’s available memory, CPU

utilization, disk and network access behaviors, etc. The FM coordi-

nates with the Placement and Load Balancer (PLB) (Sec. 5.3). The

FM periodically receives load reports from the RAs running on

each node, aggregates, and sends it to the PLB. Newly joined nodes

explicitly inform the FM, and failures are detected via the mecha-

nisms of Sec. 4.2 and relayed from the arbitrator to the FM as they

occur. The FM’s main actions are:

(1) Create a Replica: When either: a) a replica is created for

the first time, or b) a replica goes down and FM has to re-

create it. In both cases FM consults with PLB which decides

the placement for services/replicas, and FM initiates the

placement.

(2) Move a Replica:When an imbalance occurs, PLB calculates

a replication migration plan, and FM executes it.

(3) Reconfiguration: If a primary replica goes down, the FM

selects a secondary replica and promotes it as primary. If the

old primary comes up, it is marked as a secondary.

The failure of an entire FM (replica set), though rare, still needs

fast recovery. This is handled by another stateless service called the

Failover Manager Master (FMM), which runs the same logic as

the FM, except that it manages the FM instead of the microservices.

If an FM fails the FMM restarts it quickly with cached state. If the

FMM itself fails, it reconstructs its state from scratch by querying

the SF-Ring. In SF-Ring, the FMM is elected consistently using the

election protocol of Sec. 4.4, i.e., as the node whose token range

contains the ID 0.

5.2 Naming and Resolution
Service Fabric’s Naming Service maps service instance names to

the endpoint addresses they listen on. All service instances in

SF have unique names represented as URIs– a typical format is

SF:/MyApplication/MyService. The name of the service does not

change over its lifetime, only the endpoint address binding can

change (e.g., if the service is migrated). Full names are DNS-style

hierarchical names, e.g.,

http://mycluster.eastus.cloudapp.microsoft.com:19008/MyApp/

MyService?PartitionKey=3&PartitionKind=Int64Range. This allows

DNS to resolve the prefix, and SF’s Naming Service to resolve the

rest. The FM (Sec. 5.1) also caches name-target mappings for fast

resolution and to make fast decisions upon failures.

5.3 Placement and Load Balancer (PLB)
The Placement and Load Balancer (PLB) is a stateful SF service in

charge of placing replicas/instances (of microservices) at nodes and

ensuring load balance. Unlike traditional DHTs, where object IDs

are hashed to the ring, the PLB explicitly assigns each service’s

replicas (primary and secondaries) to nodes in SF-Ring. It takes into

account: i) available resources at all nodes (e.g., memory, disk, CPU

load, traffic, etc.), ii) conceptual resources (e.g., outstanding requests

at a particular service), and iii) parameters of typical requests (e.g.,

request size, frequency, diurnal variation, etc.). The PLB’s continu-

ous role is to move sets of services from overly exhausted nodes to

underutilized nodes. It also moves services away from a node that

is about to be upgraded or is overloaded due to a long workload

spike.

Large State Space: In practice the PLB needs to deal with a state

space that is both huge (hundreds of different metrics and values,

conflicting requirements, etc.), and occasionally quite constrained

(e.g., placement of services only on certain nodes, fault-tolerance

by avoiding replica colocation, etc.). A typical scenario involves

tens of thousands of objects, replicated 3-ways, but spread over

only a few hundred nodes. Worse, things change frequently: which

resources are important, howmany resources a particular workload

is actually consuming, what the workload’s constraints are, which

nodes are failing and joining, etc., all change during the runtime

of the service. This means that the decision taken currently might

not be valid in future. Therefore, it is better to continuously make

small improvements and re-evaluate them later. Quick and nimble

decisions are preferable over algorithms that try to reach an optimal

state but use up a lot of resources to explore the state space.

SimulatedAnnealing: In order to select a near-optimal placement

of objects across nodes given the above constraints, the PLB uses

simulated annealing [50]. We initially attempted to use LP/IP-based

and genetic algorithms [25, 38, 63] but found they either took too

long to converge or gave solution which were far from optimal. We

picked simulated annealing as it bridged these worlds: it is both

fast and close to optimal.

Simulated annealing calculates an energy for each state. PLB’s

energy function is user-definable but a common case is as the

average standard deviation of all metrics in the cluster, with a lower

score being more desirable. The simulated annealing algorithm sets

a timer (default values later) and then explores the state space until

either the timer expires or until convergence. Each step generates

a random move, considers the energy of the new prospective state

due to this move, and decides whether to jump. If the new state

has lower energy the annealing process jumps with probability 1;

otherwise if the new state has d more energy than the current and

the current temperature is T , the jump happens with probability

e−
d
T . This temperature T is high in initial steps (allowing jumps

away from local minima) but falls linearly across iterations to allow

convergence later.

The move chosen in each step is fine-grained. Examples include

moving a secondary replica to another node, swapping primary



Service Fabric: A Distributed Platform for Building Microservices in the Cloud EuroSys ’18, April 23–26, 2018, Porto, Portugal

and secondary replica, etc. SF only considers valid moves that sat-

isfy constraints: i) under which the PLB operates, and ii) for fault-

tolerance. For instance, the PLB cannot create new nodes, nor can

it move a primary replica to colocate with a secondary replica of

the same partition.

SF supports two modes of annealing: fast mode (10 s timer value),

and a slow mode (120 s timer) that is more likely to converge to the

optimal. During initial placement we run annealing for only 0.5 s.

When the annealing ends, the energy of the system’s current

state is recalculated (as it may have changed), and the new state

is initiated only if it actually improves the energy. Moves are com-

pacted using transitivity rules and are sent to the FM to execute.

6 RELIABLE COLLECTIONS
Reliable Collections provide stateful services in SF. All the use cases

described in Sec. 2.3 directly used Reliable Collections. Internally

its biggest users are Microsoft Intune and Microsoft CRM Service.

SF’s Reliable collections include Reliable Dictionary and Reli-

able Queue, available as classes in popular software programming

frameworks. These data structures are:

• Available and Fault-tolerant: Via replication;
• Persisted: Via disk, to withstand server, rack, or datacenter

outages;

• Efficient: Via asynchronous APIs that do not block threads on

IO;

• Transactional: Via APIs with ACID semantics.

A key difference between storage systems built using SF APIs

(e.g., Reliable Collections) and other highly-available systems (such

as Microsoft Queue Storage [9], Microsoft Table Storage [10], and

Redis [71]) is that the state is kept locally in the service instance

while also being made highly available. Therefore, the most com-

mon operations i.e., reads, are local.

Writes are relayed from primary to secondaries via passive repli-

cation, and are considered complete when a quorum of secondaries

acknowledge it. Further extension points allow an application to

achieve weaker consistency by relaxing where the read can go,

e.g., “always read from primary” to “read from secondary.” Our

users who build latency-sensitive applications find this particularly

useful.

Applications can quickly failover from a failed node to a hot

standby replica. Groups of applications can be migrated from one

node to another duringmaintenance such as for patching or planned

restarts.

Benefits ofReliance onLower Layers:Reliable Collections lever-
age the components described previously in this paper. Replicas are

organized in an SF-Ring (Sec. 4.3), failures are detected (Sec. 4.2),

and a primary kept elected (Sec. 4.4). Periodically, as well as when

replica changes occur (node joins, failures, leaves, etc.), FM+PLB

(Sec. 5) keeps the replicas fault-tolerant and load-balanced.

SF is the only self-sufficient microservice system that can be

used to build a transactional consistent database which is reliable,

available, self-*, and upgradable. The developer only has to program

with the Reliable Collections API; because lower layers assure con-

sistency, she does not have to reason about those. Today there are

1.82 Million such transactional DBs over SF (100K machines).

7 LESSONS LEARNED
Over the past decade of running Service Fabric (SF) to support

internet-scale services in production, several of our decisions stood

the test of time while others had to be revisited/revised.

7.1 Decisions We Had to Revisit
Distributed systems are more than nodes and network: Applica-

tions are processes running on nodes and can fail in ways that do

not always lead to total failure of the node. A common occurrence

is something we have come to term as “Grey Node Failure”. In these

cases, the OS continued to work without the presence of a fully

functional OS disk. The absence of a functional disk renders the

application unhealthy. However, the SF leasing mechanism contin-

ues to run at high priority without any page faults since it does not

depend on disk. We have since added an optional disk heartbeat in
our leasing to work around this type of issue.

Application/Platform responsibilities need to be well isolated: Early
on, SF’s customer base was large internal teams who had systems

expertise in building internet-scale services (e.g., Azure Cosmos

DB). Our initial application interaction model was designed for such

teams who had close collaboration with us. They always conformed

to the requirements of the SF APIs. One simple example was when

the platform needed to close a replica, SF would call close on the

application code and wait for the replica close to complete. This

allowed the replica to perform proper clean up. The same model

does not necessarily workwith a larger set of application developers

who have bugs or take a long time to cleanly shutdown. We have

since made changes to SF where the close of the replica getting

stuck does not cause availability loss and the system moves past it

after a configurable close timeout.

Capacity planning is the application’s responsibility (but developers
need help): At the platform level we cannot completely foresee ap-

plication capacity requirements and have been frequently asked to

investigate increased latency issues that arise when the application

is driving the machine beyond its capacity like IO or memory. We

found this out the hard way when some of the core Microsoft Azure

services kept having issues due to under-provisioning. Migrating

to larger hardware was the only solution. We have since instituted

that all applications explicitly specify their capacity requirements

like CPU, Memory, IO, etc. The system now ensures application

containers run on sufficiently-provisioned machines and enforces

developer-specified limits on these containers, so that developers

gain the insight and accountability for the capacity limits they need

to specify.

Different Subsystems Require Different Investments: The Federa-
tion Subsystem was the most intellectually challenging and took

up the majority of time during the overall 15+ years of develop-

ment (in these early days, the SF team was small in size). It was

very important to get this substrate right, as its correctness and

consistency was critical in order to be able to build SF’s remaining

sub-systems above it. In comparison, the failover capabilities in the



EuroSys ’18, April 23–26, 2018, Porto, Portugal Kakivaya et al.

Reliability subsystem required far more human-hours as they had a

larger number of moving parts, and were amenable to many more

optimizations. The team was also larger by this later stage of the

SF project.

7.2 Decisions That Stood The Test of Time
Monitored upgrades and clean rollbacks of platform upgrades al-

low faster releases and give customers confidence: Customers often

avoid upgrading (to the latest SF release) because of fears around

consequences of bad upgrades. SF handles this via an automatic

roll-back mechanism if an upgrade starts causing health issues in

the cluster. Rollbacks might be needed because of a bug in the ap-

plication where upgrade was not being properly handled, or a bug

in the platform, or a completely different environmental reason.

We have worked extremely hard to ensure auto-roll-back works

smoothly, and it has given our customers immense confidence in

upgrading quickly, as they know that bad upgrades will be rolled

back automatically. This also allows us to quickly iterate and ship

faster. Cases where rollbacks have gotten stuck are relatively rare.

Changes to the system should be staged: SF upgrades (for code or
configuration) have always been staged. Some customers tried to

work around SF staged deployments by performing a silent config-

uration deployment via external configuration stores. While this

gave the perception of faster upgrades, almost all these cases even-

tually caused outages due to fat fingering. Today most SF customers

understand the value of orchestrated upgrades and adhere to them.

Health reporting leads to better lifecycle management and easier
debugging: Applications can tap into SF’s Health Store to ensure

that application+platform upgrades are proceeding without avail-

ability loss. The Health Store also allows for easier debugging of

the cluster due to metrics it collects. This service also increases

customer confidence.

“Invisible” external dependencies need care: External dependen-
cies like DNS, Kerberos [49], Certificate Revocation Lists, need to

be clearly identified. Application developers need to be cognizant

of how failures of these dependencies affect the application. We

had an incident where a customer was hosting a large SF cluster us-

ing machines with Fully-Qualified Domain Names (FQDNs), which

meant that the SF cluster needed a DNS server for FQDN resolution.

The customer did the right thing in ensuring that the DNS service is

highly available by replicating it. However, DNS replication is only

eventually consistent. This meant that occasionally the same FQDN

was resolving to two different machines (IPs), leading to availability

outages in the system. To resolve this issue, the customer switched

back to directly using IP addresses instead of FQDNs.

8 EVALUATION
We evaluate the most critical aspects of Service Fabric: failure detec-

tion and membership, message delay, reconfiguration, and SF-Ring.

Where available, we present results from production data (Sec-

tions 8.3, 8.4, 8.5). We use simulations in cases where we need to

compare to alternative designs in a fair way (Sections 8.1, 8.6), or

measure algorithmic overhead (Sections 8.1, 8.2).

We have made Service Fabric binaries available [62]. We are look-

ing into sharing datasets, however we are limited by compliance

reasons and proprietary issues. We are working on open-sourcing

the code for SF.

8.1 Benefits of the Arbitrator

Figure 6: Comparison: Arbitrator Vs. Arbitrator less scheme. Arbi-
trator handles cascading failures and reduces the number of nodes leaving the
system. M = number of monitor per node.

To show that SF’s arbitrator mechanism (Sec. 4.2.2) efficiently

helpsmaintain consistentmembership, we compare it to an arbitrator-

less mechanism we designed. In the latter approach, when a node

fails to renew its lease, instead of contacting the arbitrators, it co-

ordinates with its neighbors and then gracefully leaves the system.

Neighbors communicate amongst each other to keep membership

consistent.

Due to timeouts, both mechanisms may force good nodes to

leave. Fig. 6 shows, for various failure scenarios, the total number

of such false positives. We observe that SF’s original arbitrator

approach incurs far fewer false positives than the arbitrator-less

scheme. In fact, the number of false positives under an arbitrator

based scheme grows much slower (with number of failure) than

under the arbitrator-less scheme. This is because of cascading fail-

ure detections (Section 4.2.2), while SF’s arbitrator prevents such

cascades.

Figure 7: Stabilization Message Count: Arbitrator Vs. Arbitrator
less scheme. Crashed Node set {1, 10, 20, 30}. M = number of monitor per
node.

Fig. 7 shows how many messages are needed to stabilize the ring,

after a failure. As we increase the number of monitors per node

(M), SF’s arbitrator’s overhead grows slower than the arbitrator-

less scheme. In fact, analytically, these overheads are linear and

quadratic respectively. When using arbitrators, a failure causes the



Service Fabric: A Distributed Platform for Building Microservices in the Cloud EuroSys ’18, April 23–26, 2018, Porto, Portugal

M monitors of a failed node to perform a request-reply to the arbi-

trator (2M messages). In arbitrator-less approaches, a failure causes

allM monitors to communicate with each other (2M2
messages).

8.2 Failure Detector Overhead

Figure 8: Failure Detector (FD) message overhead. Cluster messages
increase linearly with cluster size. M = number of monitors per node.

Fig. 8 shows the total cluster overhead of the leasing mechanism

(Sec. 4.2.1). For eachM , cluster load scales linearly with the number

of nodes (production SF usesM = 4 monitors per node). Hence SF’s

leasing mechanism incurs per-node overhead that is constant and

scalable, independent of cluster size.

8.3 In Production: Arbitrator Behavior

Figure 9: Arbitrator Call count per hour (total 9 hours of traces).
Hours are rearranged based on the churn rate.

Fig. 9 evaluates the load on the arbitrator group. The data is from

9 hours of a 225+ machine production cluster. Each machine hosts

an expected 4 SF instances. Below, we call each of these instances a

“node”. We sort trace hours in increasing order of churn, and the

plot shows both event counts and hourly churn rate.

We explain the 4 event types. When a node A detects failure of

node B and contacts the arbitrator, there are four possible outcomes:

i) Grant-Reject: both nodes A and B send arbitration requests and

only one is granted; ii) Reject-Reject: both nodes A and B send

arbitration requests, and both of them are rejected; iii) Grant-N/A:
only one node in a pair sends request and succeeds; iv) Reject-N/A:
only one node in a pair sends request and is rejected.

First we observe that a majority of hours have medium churn

with between 10-15 nodes churned per hour (Hours_2, 1, 4, 5, 8).

Only 22% of hours (Hours_6, 7) have very high churn, and another

22% have low churn (Hours_0, 3). Second, the number of duplicate

messages received at the arbitrator, and the wholesale rejections at

arbitrator startup (first Tm time units: see Sec. 4.2.2), are together

captured by the sum of Reject-Reject and Reject-N/A events (two

topmost bar slivers). This is small at medium churn (Hours_4, 5, 8),

and does not increase much at high churn (Hours_6, 7). Hence we

conclude that: i) the arbitrator’s effort is largely focused on resolv-

ing new detection conflicts rather than re-affirming past decisions

to errant nodes; and ii) false positives due to arbitrator startup are

small in number. Our data also indicates SF nodes leave quickly

after they are asked to.

8.4 In Production: Message Delay Under Churn

Figure 10: CDF ofMessage Delay under Churn. Normal Operation has
lower churn than with Upgrade.

1
st

Perc. 5
th

Perc. 50
th

Perc. 95
th

Perc. 99
th

Perc.

No Churn 1 1 1 4 24

Churn 1 1 2 14 175

Table 2: Tail latency: Message Delay (millisecond).

Fig. 10 measures the total message delay (including routing la-

tency) in a 24 hour trace of 205 VMs across 3 data-centers. Each

VM is equipped with 24 cores, 168 GB RAM, 3 × 1.81 TB HDD and

4 × 445 GB SSD.

The plot shows the latency CDF for two scenarios: i) Normal
Operation, prone to natural churn, e.g., due to failures; and ii) With
Upgrade, when there is higher churn due to node upgrades, system

upgrades, service upgrades, etc. Going from normal operation to

upgrades, the 80
th

percentile latency remains largely unaffected.

Table 2 shows the median latency rises only two-fold, from 1 ms to

2 ms. 95th percentile latency rises a modest 3.5×. We conclude that

SF deals with churn and upgrades in a low-overhead way.

8.5 In Production: Reconfiguration Time
Reconfigurations triggered by service failure, overloaded nodes,

service upgrade, machine failure, system upgrades, etc., are handled

by the FM and PLB (Sections 5.1, 5.3).

Failover SwapPrimary Other

1% 20% 79%

Table 3: Different Reconfiguration Events. Over a 20-day trace.



EuroSys ’18, April 23–26, 2018, Porto, Portugal Kakivaya et al.

Figure 11: Statistics of different Reconfiguration Delays in the 20
day trace. Candlestick plots show the 1st and 99th percentiles, 1st , 2nd and
3
rd quartiles and the average (X’s).

We collected a 20 day trace with 3 Million events from the same

production cluster as Sec. 8.4. Table 3 shows a breakdown by re-

configuration type. Only Failover and SwapPrimary events affect

availability (total 21%). Fig. 11 shows that SF makes control deci-

sions about these two types of events quickly. The average time to

perform failover is 1.9 s, and 99
th

percentile is 4.8 s. While “Other”

events constitute 79%, they do not affect data availability as they

deal with per-replica reconfiguration, and are quite fast.

Fig. 12 depicts a timeline over 6 days of these 3 event types. Large

spikes are due to pre-planned upgrades of infrastructure, applica-

tion, and SF. Otherwise, we observed no fixed or predictable pat-

terns (e.g., periodic, diurnal). This indicates thatmodeling+prediction

approaches would be excessive, and instead SF’s reactive approach

is preferable.

Figure 12: Reconfiguration Event count per hour. Started from 13
th

September 2017 00:00AM.

Figure 13: Statistics of ReconfigurationDelay (at placement) across
six days. Candlestick plots show the 1st and 99th percentiles, 1st , 2nd and
3
rd quartiles and the average (X’s).

Fig. 13 shows the time to execute a reconfiguration. Across the

week, we observe very stable reconfiguration times. Tail latency is

within 2.2 s and the average latency hovers at around 1.0 s. This

is the time to execute control actions for the reconfiguration, after

simulated annealing and in parallel with data transfer (which itself

is dependent on the size of the object). Overall, we conclude that

SF reconfigures replicas very quickly and predictably.

8.6 SF-Ring vs. Chord

Figure 14: SF-Ring vs. Chord: HopCount as function of system size
(log scale). Points perturbed slightly (±0.05 on X-axis) for clarity.

We faithfully implemented a simulation of both SF-Ring and

Chord [79] routing. Fig. 14 shows that SF-Ring messages transit

31% fewer hops in the ring than Chord. At the 1
st

percentile the

savings is 20% and at the 99
th

percentile it is 34%. The slope of the

SF-Ring and Chord lines are respectively 0.34 and 0.5. Therefore

when the number of nodes doubles Chord requires 49.27% more

hops than SF-Ring.

Figure 15: SF-Ring vs. Chord: Memory. Unique Routing Table Entry
Count as a function of system size (log scale).

Fig. 15 compares the memory cost, calculated as the number of

unique routing table entries, vs. cluster size (log scale). SF-Ring

utilizes 117% higher memory than Chord. This is the cost to achieve

faster routing latency. Yet, practically speaking SF-Ring’s memory

overhead is quite small–most containers/VMs today have many

GBs of memory. In comparison, in an SF-Ring with 16K nodes, 99%

of nodes store on average 33 routing table entries. Conceptually,

with 100 B per entry, this comes out to only 3.3 KB of total memory

(SF memory is higher in practice, but still small).

9 RELATEDWORK
Microservice-like Frameworks: Nirmata [64] is a microservice

platform built atop Netflix open-source components [65]: gateway

service Zuul [90], registry service Eureka [37], management service

Archaius [6], and REST client Ribbon [74]. Unlike Service Fabric,

Nirmata does not have consistency and state built into the system.



Service Fabric: A Distributed Platform for Building Microservices in the Cloud EuroSys ’18, April 23–26, 2018, Porto, Portugal

It also has external dependencies. Other microservices platforms

include Pivotal Application Service [67] and Spring Cloud [78].

However, none of these support stateful services out of the box.

Akka [3] is a platform that embraces actor-based programming to

build microservices. These systems do not solve the hard problems

related to state or consistency, and do not take as principled an

approach to design as SF. AWS Lambda [7] and Azure functions [13]

both provide event-driven, serverless computing platforms for run-

ning small pieces of short lived code. SF is differentiated because

it is the only data-aware orchestration system today for stateful

microservices.

SF is the only standalone microservice platform today. The sys-

tems just listed usually require an external/remote drive for state.

Akka sits atop a JVM. Spanner [27] relies on Colossus, Paxos, and

naming. In SF, beyond the OS/machine, there are no external de-

pendencies at the distributed systems layer.

ContainerOrchestrators:Container services like Kubernetes [51],
Azure Container Service [8], etc., allow code to run and be man-

aged easily, but they are typically stateless. SF supports state, which

entails further challenges related to failover, consistency, and man-

ageability (our paper addressed these goals). Further, container

systems do not provide prescriptive guidance on writing applica-

tions; SF provides full lifecycle management.

Strong Consistency in Storage Systems: It is clear that many

users and applications prefer strong notions of consistency along-

side high performance. Distributed storage systems have come full

circle from relational databases to eventually consistent databases [4,

5, 16, 26, 28, 33, 56, 61, 73] to recently, high throughput transactional

databases. After eventually consistent databases, stronger models

of consistency emerged (e.g., red-blue [54], causal+ [55], etc.). Many

recent systems provide strong consistency and transaction support

at high throughput: 1) systems layered atop unreliable replication,

e.g., Yesquel [2], Callas [88], Tapir [89]; and 2) systems layered atop

strong hardware abstractions, e.g., FaRM [34], RIFL [53], DrTM [86].

Cluster OSes: Prominent among cluster OSes that manage multi-

tenancy via containers are: Apache YARN [84] which is used un-

derneath Hadoop [41], Mesos [44] that provides dominant resource

fairness, and Kubernetes [51].

Distributed Hash Tables and NoSQL: In the heyday of the P2P

systems era, many DHTs were invented including: i) those that used

routing tables (Chord [79], Pastry [75], Kademlia [57], Bamboo [72],

etc.), and ii) those that used more memory for faster routing [39, 40].

P2P DHTs influenced the design of eventually consistent NoSQL

storage systems including Dynamo [33], Riak [73], Cassandra [52],

Voldemort [80], MongoDB [61], and many others.

10 SUMMARY
This paper presented Service Fabric (SF), a distributed platform at

Microsoft running on the Microsoft Azure public cloud. SF enables

design and lifecycle management of microservices in the cloud.

We have described several key components of SF showing their

modular design, self-* properties, decentralization, scalability, and

especially the unique properties of strong consistency, and stateful

support from the ground up. Experimental results from real pro-

duction traces reveal that Service Fabric: i) reconfigures quickly
(within seconds); ii) efficiently uses an arbitrator to resolve failure

detection conflicts, in spite of high churn; and iii) routes messages

efficiently, quickly, and using small amounts of memory.

Future Directions: Much of our ongoing work addresses the

problem of reducing the friction of managing the clusters. One

effort towards that is to move to a service where the customer

never sees individual servers. They deploy their applications and

containers against a single consolidated system. Other interesting

and longer-term models revolve around having customers owning

servers, but also being able to run microservice management as

a service where these servers join in. Also in the short term, we

are looking at enabling different consistency levels in our Reliable

Collections, automatically scaling in and out Reliable Collection

partitions, and imbuing the ability to geo-distribute replica sets.

Slightly longer term, we are looking at best utilizing non-volatile

memory as a store for Service Fabric’s Reliable Collections. This

requires tackling many interesting problems ranging from logging,

byte vs. block oriented storage, efficient encryption, and transaction-

aware memory allocations.

ACKNOWLEDGMENTS
Work by Shegufta Bakht Ahsan and Indranil Gupta was supported

in part by the following grants: NSF CNS 1409416, NSF CNS 1319527,

AFOSR/AFRL FA8750-11-2-0084, and a generous gift fromMicrosoft.

We are grateful to the following for help with experiments and

traces: Tanvir Tanviruzzaman, Ketaki Joshi, Leon Mai, Gayathri

Sundararaman, Hend Kamal Eldin, Hareesh Nagaraj. We thank the

reviewers and our shepherd Romain Rouvoy for their insightful

comments.

REFERENCES
[1] Adding nodes to an existing cluster. https://docs.datastax.com/en/cassandra/

2.1/cassandra/operations/ops_add_node_to_cluster_t.html. Last accessed Febru-

ary 2018.

[2] Aguilera, M. K., Leners, J. B., and Walfish, M. Yesquel: Scalable SQL storage

for web applications. In Proceedings of the 25th Symposium on Operating Systems
Principles (New York, NY, USA, 2015), SOSP ’15, ACM, pp. 245–262.

[3] Akka. http://akka.io/. Last accessed February 2018.

[4] Amazon SimpleDB. https://aws.amazon.com/simpledb/. Last accessed February

2018.

[5] Andler, S. F., Hansson, J., Eriksson, J., Mellin, J., Berndtsson, M., and

Eftring, B. DeeDS : Towards a distributed and active real-time database system.

ACM SIGMOD Record 25, 1 (Mar. 1996), 38–51.

[6] Archaius. https://github.com/Netflix/archaius. Last accessed February 2018.

[7] AWS Lambda. https://aws.amazon.com/lambda/. Last accessed February 2018.

[8] Azure Container Service. https://azure.microsoft.com/en-us/services/container-

service/. Last accessed February 2018.

[9] Azure Queue Storage. https://azure.microsoft.com/en-

us/services/storage/queues/. Last accessed February 2018.

[10] Azure Table Storage. https://azure.microsoft.com/en-us/services/storage/tables/.

Last accessed February 2018.

[11] Azure Cosmos DB. https://azure.microsoft.com/en-us/services/cosmos-db/. Last

accessed February 2018.

[12] Azure Event Hubs. https://azure.microsoft.com/en-us/services/event-hubs/. Last

accessed February 2018.

[13] Azure Functions. https://azure.microsoft.com/en-us/services/functions/. Last

accessed February 2018.

[14] Azure IoT. https://azure.microsoft.com/en-us/suites/iot-suite/. Last accessed

February 2018.

[15] Azure SQL DB. https://azure.microsoft.com/en-us/services/sql-database/. Last

accessed February 2018.

[16] Bailis, P., and Ghodsi, A. Eventual consistency today: Limitations, extensions,

and beyond. Communications of the ACM 56, 5 (May 2013), 55–63.



EuroSys ’18, April 23–26, 2018, Porto, Portugal Kakivaya et al.

[17] Balalaie, A., Heydarnoori, A., and Jamshidi, P. Migrating to cloud-native

architectures using microservices: An experience report. Computing Research
Repository abs/1507.08217 (2015).

[18] Balalaie, A., Heydarnoori, A., and Jamshidi, P. Microservices architecture

enables devops: Migration to a cloud-native architecture. IEEE Software 33, 3
(2016), 42–52.

[19] Birman, K., and Joseph, T. Exploiting virtual synchrony in distributed systems.

In Proceedings of the 11th ACM Symposium on Operating Systems Principles (New
York, NY, USA, 1987), SOSP ’87, ACM, pp. 123–138.

[20] Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Minsky, Y.

Bimodal multicast. ACM Transactions on Computer Systems (TOCS) 17, 2 (May

1999), 41–88.

[21] Bluemix. https://www.ibm.com/cloud-computing/bluemix. Last accessed Febru-

ary 2018.

[22] BMW Connected App. http://www.bmwblog.com/2016/10/06/

new-bmw-connected-app-now-available-ios-android/. Last accessed February

2018.

[23] BMWOpenMobility Cloud. http://www.bmwblog.com/tag/open-mobility-cloud/.

Last accessed February 2018.

[24] Burrows, M. The Chubby Lock Service for Loosely-coupled Distributed Systems.

In Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation (Berkeley, CA, USA, 2006), OSDI ’06, USENIX Association, pp. 335–350.

[25] Carretero, J., and Xhafa, F. Genetic algorithm based schedulers for Grid

computing systems. In International Journal of Innovative Computing, Information,
and Control ICIC 3 (01 2007), vol. 5, pp. 1053–1071.

[26] Carstoiu, B., and Carstoiu, D. High performance eventually consistent dis-

tributed database Zatara. In Proceedings of the 6th International Conference on
Networked Computing (May 2010), pp. 1–6.

[27] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., Ghe-

mawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S.,

Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S.,

Rao, R., Rolig, L., Saito, Y., Szymaniak, M., Taylor, C., Wang, R., and Wood-

ford, D. Spanner: Google’s Globally-distributed Database. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2012), OSDI’12, USENIX Association, pp. 251–264.

[28] CouchDB. http://couchdb.apache.org/. Last accessed February 2018.

[29] Service Fabric Customer Profile: BMW Technology Corporation.

https://blogs.msdn.microsoft.com/azureservicefabric/2016/08/

24/service-fabric-customer-profile-bmw-technology-corporation/. Last accessed

February 2018.

[30] Service Fabric Customer Profile: Mesh Systems.

https://blogs.msdn.microsoft.com/azureservicefabric/2016/06/

20/service-fabric-customer-profile-mesh-systems/. Last accessed February 2018.

[31] Service Fabric Customer Profile: TalkTalk TV.

https://blogs.msdn.microsoft.com/azureservicefabric/2016/03/

15/service-fabric-customer-profile-talktalk-tv/. Last accessed February 2018.

[32] Das, A., Gupta, I., andMotivala, A. SWIM: scalable weakly-consistent infection-

style process group membership protocol. In Proceedings International Conference
on Dependable Systems and Networks (2002), DSN ’02, pp. 303–312.

[33] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,

Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. Dynamo:

Amazon’s highly available key-value store. In Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles (New York, NY, USA, 2007), SOSP

’07, ACM, pp. 205–220.

[34] Dragojević, A., Narayanan, D., Nightingale, E. B., Renzelmann, M., Shamis,

A., Badam, A., and Castro, M. No compromises: Distributed transactions with

consistency, availability, and performance. In Proceedings of the 25th Symposium
on Operating Systems Principles (New York, NY, USA, 2015), SOSP ’15, ACM,

pp. 54–70.

[35] Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,

Mustafin, R., and Safina, L. Microservices: yesterday, today, and tomorrow.

Computing Research Repository abs/1606.04036 (2016).
[36] Esposito, C., Castiglione, A., and Choo, K. K. R. Challenges in delivering

software in the cloud as microservices. IEEE Cloud Computing 3, 5 (Sept 2016),
10–14.

[37] Eureka. https://github.com/Netflix/eureka. Last accessed February 2018.

[38] Ge, Y., and Wei, G. GA-Based Task Scheduler for the Cloud Computing Systems.

In Proceedings of International Conference on Web Information Systems and Mining
(Oct 2010), vol. 2, pp. 181–186.

[39] Gupta, A., Liskov, B., and Rodrigues, R. One hop lookups for peer-to-peer

overlays. In Proceedings of the 9th Conference on Hot Topics in Operating Systems
- Volume 9 (Berkeley, CA, USA, 2003), HOTOS’03, USENIX Association, pp. 2–2.

[40] Gupta, I., Birman, K., Linga, P., Demers, A., and van Renesse, R. Kelips: Building

an efficient and stable P2P DHT through increased memory and background

overhead. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(2003).

[41] Hadoop. http://hadoop.apache.org/. Last accessed February 2018.

[42] Hasha, R., Xun, L., Kakivaya, G., and Malkhi, D. Allocat-

ing and reclaiming resources within a rendezvous federation.

https://patents.google.com/patent/US20080031246

A1, 2008. US Patent 11,752,198.

[43] Hasha, R. L., Xun, L., Kakivaya, G. K. R., and Malkhi,

D. Maintaining consistency within a federation infrastructure.

https://patents.google.com/patent/US20080288659

A1, 2008. US Patent 11,936,589.

[44] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R.,

Shenker, S., and Stoica, I. Mesos: A platform for fine-grained resource sharing

in the data center. In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation (Berkeley, CA, USA, 2011), NSDI ’11, USENIX

Association, pp. 295–308.

[45] Hunt, P., Konar, M., Junqeira, F. P., and Reed, B. ZooKeeper: Wait-free coor-

dination for internet-scale systems. In Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference (Berkeley, CA, USA, 2010), USENIX ATC

’10, USENIX Association, pp. 11–11.

[46] Johnson, D. B., and Maltz, D. A. Dynamic source routing in ad hoc wireless

networks. InMobile Computing (1996), Kluwer Academic Publishers, pp. 153–181.

[47] Kakivaya, G., Hasha, R., Xun, L., and Malkhi, D. Main-

taining routing consistency within a rendezvous federation.

https://patents.google.com/patent/US20080005624

A1, 2008. US Patent 11,549,332.

[48] Kakivaya, G. K. R., and Xun, L. Neighborhood maintenance in the federation.

https://patents.google.com/patent/US20090213757

A1, 2009. US Patent 12,038,363.

[49] Kerberos. https://web.mit.edu/kerberos/. Last accessed February 2018.

[50] Khachaturyan, A., Semenovsovskaya, S., and Vainshtein, B. The thermo-

dynamic approach to the structure analysis of crystals. Acta Crystallographica
Section A 37, 5 (Sep 1981), 742–754.

[51] Kubernetes. https://kubernetes.io/. Last accessed February 2018.

[52] Lakshman, A., and Malik, P. Cassandra: a decentralized structured storage

system. Operating Systems Review 44, 2 (2010), 35–40.
[53] Lee, C., Park, S. J., Kejriwal, A., Matsushita, S., and Ousterhout, J. Imple-

menting linearizability at large scale and low latency. In Proceedings of the 25th
Symposium on Operating Systems Principles (New York, NY, USA, 2015), SOSP

’15, ACM, pp. 71–86.

[54] Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., and Rodrigues, R.

Making geo-replicated systems fast as possible, consistent when necessary. In

Proceedings of the 10th USENIX Conference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2012), OSDI ’12, USENIX Association, pp. 265–278.

[55] Lloyd, W., Freedman, M. J., Kaminsky, M., and Andersen, D. G. Don’t settle

for eventual: Scalable causal consistency for wide-area storage with COPS. In

Proceedings of the 23rd ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2011), SOSP ’11, ACM, pp. 401–416.

[56] MariaDB. https://mariadb.org/. Last accessed February 2018.

[57] Maymounkov, P., and Mazières, D. Kademlia: A peer-to-peer information

system based on the XOR metric. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems (London, UK, UK, 2002), IPTPS ’01, Springer-
Verlag, pp. 53–65.

[58] Mesh Systems. http://www.mesh-systems.com/. Last accessed February 2018.

[59] Microsoft cortana. https://www.microsoft.com/en-

us/mobile/experiences/cortana/. Last accessed February 2018.

[60] Microsoft Intune. https://www.microsoft.com/en-us/cloud-platform/microsoft-

intune. Last accessed February 2018.

[61] MongoDB. https://www.mongodb.org/. Last accessed February 2018.

[62] Microsoft Service Fabric. https://azure.microsoft.com/en-us/services/service-

fabric/. Last accessed February 2018.

[63] ning Gan, G., lei Huang, T., and Gao, S. Genetic simulated annealing algorithm

for task scheduling based on cloud computing environment. In 2010 International
Conference on Intelligent Computing and Integrated Systems (Oct 2010), pp. 60–63.

[64] Nirmata. http://www.nirmata.com/. Last accessed February 2018.

[65] Netflix Open Source Software Center. https://netflix.github.io/. Last accessed

February 2018.

[66] Perkins, C. E., and Royer, E. M. Ad-hoc on-demand distance vector (AODV)

routing. In In Proceedings of the 2nd IEEE Workshop On Mobile Computing Systems
and Applications (1997), pp. 90–100.

[67] Pivotal Application. https://pivotal.io/platform/pivotal-application-service. Last

accessed February 2018.

[68] Quorum Business Solutions. https://www.qbsol.com/. Last accessed February

2018.

[69] Service Fabric Customer Profile: Quorum Business Solutions.

https://blogs.msdn.microsoft.com/azureservicefabric/2016/11/

15/service-fabric-customer-profile-quorum-business-solutions/. Last accessed

February 2018.

[70] Ramasubramanian, V., and Sirer, E. G. Beehive: O(1) lookup performance for

power-law query distributions in peer-to-peer overlays. In Proceedings of the
1st Conference on Symposium on Networked Systems Design and Implementation -
Volume 1 (Berkeley, CA, USA, 2004), NSDI ’04, USENIX Association, pp. 8–8.



Service Fabric: A Distributed Platform for Building Microservices in the Cloud EuroSys ’18, April 23–26, 2018, Porto, Portugal

[71] Redis. https://redis.io/. Last accessed February 2018.

[72] Rhea, S., Geels, D., Roscoe, T., and Kubiatowicz, J. Handling churn in a DHT.

In Proceedings of the Annual Conference on USENIX Annual Technical Conference
(Berkeley, CA, USA, 2004), ATEC ’04, USENIX Association, pp. 10–10.

[73] Riak. http://basho.com/products/. Last accessed February 2018.

[74] Ribbon. https://github.com/Netflix/ribbon. Last accessed February 2018.

[75] Rowstron, A. I. T., and Druschel, P. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg
(London, UK, UK, 2001), Middleware ’01, Springer-Verlag, pp. 329–350.

[76] Saltzer, J. H., Reed, D. P., and Clark, D. D. End-to-end arguments in system

design. ACM Transactions on Computer Systems 2, 4 (Nov. 1984), 277–288.
[77] Skype for Business. https://www.skype.com/en/business/skype-for-business/.

Last accessed February 2018.

[78] Spring Cloud. http://projects.spring.io/spring-cloud/. Last accessed February

2018.

[79] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H.

Chord: A scalable peer-to-peer lookup service for internet applications. In

Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (New York, NY, USA, 2001), SIGCOMM

’01, ACM, pp. 149–160.

[80] Sumbaly, R., Kreps, J., Gao, L., Feinberg, A., Soman, C., and Shah, S. Serving

large-scale batch computed data with project voldemort. In Proceedings of the
10th USENIX Conference on File and Storage Technologies (Berkeley, CA, USA,
2012), FAST’12, USENIX Association, pp. 18–18.

[81] Talk Talk TV. http://www.talktalk.co.uk/. Last accessed February 2018.

[82] Tonse, S. Scalable microservices at Netflix. challenges and tools of the trade.

https://www.infoq.com/presentations/netflix-ipc. Last accessed February 2018.

[83] van Renesse, R., Minsky, Y., and Hayden, M. A gossip-style failure detection

service. In Proceedings of the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (London, UK, UK, 1998), Middleware

’98, Springer-Verlag, pp. 55–70.

[84] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans,

R., Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley,

O., Radia, S., Reed, B., and Baldeschwieler, E. Apache Hadoop YARN: Yet

Another Resource Negotiator. In Proceedings of the 4th Annual Symposium on
Cloud Computing (New York, NY, USA, 2013), SOCC ’13, ACM, pp. 5:1–5:16.

[85] Wang, A., and Tonse, S. Announcing Ribbon: Tying the Netflix mid-tier services

together. http://techblog.netflix.com/2013/01/announcing-ribbon-tying-netflix-

mid.html. Last accessed February 2018.

[86] Wei, X., Shi, J., Chen, Y., Chen, R., and Chen, H. Fast in-memory transaction

processing using RDMA and HTM. In Proceedings of the 25th Symposium on
Operating Systems Principles (New York, NY, USA, 2015), SOSP ’15, ACM, pp. 87–

104.

[87] Wheeler, B. Should your apps be cloud-native? https://devops.com/apps-cloud-

native/. Last accessed February 2018.

[88] Xie, C., Su, C., Littley, C., Alvisi, L., Kapritsos, M., and Wang, Y. High-

performance ACID via modular concurrency control. In Proceedings of the 25th
Symposium on Operating Systems Principles (New York, NY, USA, 2015), SOSP

’15, ACM, pp. 279–294.

[89] Zhang, I., Sharma, N. K., Szekeres, A., Krishnamurthy, A., and Ports, D. R. K.

Building consistent transactions with inconsistent replication. In Proceedings of
the 25th Symposium on Operating Systems Principles (New York, NY, USA, 2015),

SOSP ’15, ACM, pp. 263–278.

[90] Zuul. https://github.com/Netflix/zuul. Last accessed February 2018.


	Abstract
	1 Introduction
	2 Microservice Approach
	2.1 Microservice Application Model in Service Fabric
	2.2 Service Fabric and Its Goals
	2.3 Use Cases: Real SF Applications

	3 Service Fabric: Key Components
	4 Federation Subsystem
	4.1 Basic SF-Ring
	4.2 Consistent Membership and Failure Detection
	4.3 Full SF-Ring and Consistent Routing
	4.4 Leader Election

	5 Reliability Subsystem
	5.1 The Failover Manager (FM)
	5.2 Naming and Resolution
	5.3 Placement and Load Balancer (PLB)

	6 Reliable Collections
	7 Lessons Learned
	7.1 Decisions We Had to Revisit
	7.2 Decisions That Stood The Test of Time

	8 Evaluation
	8.1 Benefits of the Arbitrator
	8.2 Failure Detector Overhead
	8.3 In Production: Arbitrator Behavior
	8.4 In Production: Message Delay Under Churn
	8.5 In Production: Reconfiguration Time
	8.6 SF-Ring vs. Chord

	9 Related Work
	10 Summary
	Acknowledgments
	References

