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Abstract—Recently, a new class of “arbitrator-based” member-
ship protocols have been proposed. These claim to provide time
bounds on how long membership lists can stay inconsistent—this
property is critical in many distributed applications which need
to take timely recovery actions. In this paper, we: 1) present the
first fully decentralized and stabilizing version of membership
protocols in this class; 2) formally prove properties and claims
about both our decentralized version and the original protocol;
and 3) present experimental results from both a simulation and
a real cluster implementation.

Index Terms—failure detection, consistency, membership

I . I N T R O D U C T I O N

A group membership protocol, containing a failure detector,
is a critical component of large-scale distributed systems and
applications. Membership lists are used in datacenters for
various purposes including for traffic routing [9], [33], [50],
for multicast [6], [22], for replication [31], etc. These are used
in distributed databases [38], publish-subscribe systems [4],
[18], peer-to-peer systems [42], online gaming [23], [30], etc.

A membership service provides, at each node (process) in
the distributed system, a view of a subset of the other nodes
(processes) that are alive. We consider only fail-stop failures
(when a process crashes it stops further actions; recovering
processes rejoin with a new ID) . The membership protocol
automatically updates the membership list(s) upon node joins,
voluntary departures, and especially upon fail-stop failures.
The failure detector component of the membership protocol
must be efficient in messages and detection time, not miss
any failures (called Completeness) [11], make few mistakes in
detection (called Accuracy), and scale with group size [14].

An additional critical requirement that we focus on is
consistency. Membership protocols in use today sit at two
opposite extremes of the consistency spectrum:

• Weakly-consistent membership protocols provide an
eventual guarantee on membership lists, with some pro-
viding a (large) time bound on convergence. Nodes may
see inconsistent views of the membership lists for very
long periods of time, even under realistic conditions like
zero clock drift. Examples include SWIM [14], ring-
based heartbeating [27], gossip-style heartbeating [21],
[49], etc. These are used in peer-to-peer systems [42]
and key-value/NoSQL databases [25], [35], because these
applications are themselves weakly-consistent.

• Strongly-consistent membership protocols ensure that
membership lists are identical at all nodes. If the mem-
bership list delivery is totally ordered at alive nodes, this
is called virtual synchrony (or view synchrony) [5], [10],
[22]. At the same time, there are no timing guarantees on
detection–alive nodes may see inconsistent views of the
membership lists for indeterminately-long periods of time,
even under realistic conditions like zero clock drift and
reliable communication (but with unbounded latencies).

It is essential to design membership protocols which provide
consistency that is a timing guarantee for how long two
nodes’ membership lists can stay mutually inconsistent w.r.t.
a membership change. This is critical in many real-world
applications such as banking, stock markets, air traffic control,
vehicle routing, etc. [34], [39], [47]. In all these applications,
consistent recovery actions need to be taken in a timely manner
at multiple nodes, and concurrent incorrect actions by different
alive nodes may cause significant application errors.

Recently, a new class of membership protocols has emerged
which claim to provide timing guarantees on how long
membership lists stay inconsistent. First proposed as part of the
Microsoft’s Service Fabric system in Eurosys 2018 [28], these
membership protocols have provided sufficient consistency to
build applications like Azure SQL DB, Azure Cosmos DB,
Microsoft Skype, Azure Event Hub, Microsoft Intune, Azure
IoT Suite, Microsoft Cortana etc.

At the same time, the consistency properties of the Service
Fabric’s failure detector were never formally proven (only
hypothesized and sketched). In addition, the Service Fabric
failure detector relies on a centralized component called the
“arbitrator” to arbitrate conflicting failure detection decisions.

In this paper we make the following contributions:

• We fully decentralize the arbitrator in this new class of
failure detectors (Sec. IV).

• We propose an efficient node join mechanism to accompany
the decentralized arbitrator (Sec. V).

• We present theoretical analysis for our new algorithm
(Sec. VI). Some of this analysis also extends to the original
algorithm in the Service Fabric paper [28].

• We briefly present both simulation and cluster deployment
results to measure and compare the performance of our
new algorithms (Section VII).



I I . S Y S T E M M O D E L A N D S E RV I C E FA B R I C ’ S
C E N T R A L I Z E D M E M B E R S H I P P R O T O C O L

We describe the system model, and background on the
Service Fabric’s [28] Centralized Membership Protocol.

System Model: We assume that clock drifts are zero, i.e.,
clock rates are identical. Clocks can have skew. Messaging is
reliable, timely, and ordered, e.g., via TCP. These are reasonable
assumptions in datacenters today. We consider fail-stop failures
only. There might be heterogeneity in the system, however all
nodes are susceptible to failure.

Fig. 1. Ring topology. Nodes are organized in a virtual ring. Each
node maintains neighborhood set consists of k successors and k
predecessors.

Service Fabric’s Centralized Membership Protocol, us-
ing Arbitrators: Service Fabric’s new class of membership
protocols [28] separate out failure detection (i.e., the act of
finding a failure), from failure decision wherein detecting
nodes start recovery actions for the failure. Failure detection
is done via a fully distributed lease-based mechanism (akin to
heartbeats). Failure decisions, on the other hand, are executed
via a centralized group of nodes called arbitrators, which act
as judges to arbitrate inconsistent detections. While centralized
detection approaches like ZooKeeper [26] place the traffic of
both detection and decision on a central group of nodes, the
new approach distributes heavy detection traffic and arbitrators
only handle the relatively-rare decision traffic and work.

In Service Fabric [28], nodes are organized in a virtual ring
(Fig. 1) consisting of 2m points. A node is mapped to a point
on the ring, and so is a key (e.g., via hashing). A key is owned
by its closest node, with ties won by the predecessor.

However, the arbitrator is still centralized (at a node or at a
group of nodes). This means that if the arbitrator were to fail,
or if a majority of an arbitrator group were to fail, then no
decisions can be made. In such circumstances, all conflicts will
result in mistaken detection+decisions and nodes being forced
to leave the system. Other details of Service Fabric–beyond
those covered in the main paper [28]–are proprietary; such
proprietary details are not discussed in this paper as they are
not relevant to our contributions.

I I I . M E C H A N I S M S B O R R O W E D B Y O U R
D E C E N T R A L I Z E D A R B I T R AT O R

Our fully-decentralized failure detector borrows two kinds of
mechanisms from the original Service Fabric detector: leasing
mechanism and failure decision. Later, Section IV will build
atop this to achieve the fully decentralized detector.

While the original paper [28] only cursorily sketched the
central failure detector algorithm, here for completeness we
present these important components in a formal manner. Table I
presents all symbols used in this paper.

Symbol Uses
Ta Arbitration timeout interval
Tl Leasing period
Tarb (2Tl + Ta); Once an arbitrator locally logs a node as

failed, after this time units it can safely trim the log
entry (Corollary 2)

LPQ Lease from node P to node Q
LPQ(n) nth leasing session (building block of LPQ)
LRPQ(n) nth leasing request sent from node P to node Q
LKRQCP Lock Request from a new candidate node C to the

existing node P
ACKPQ(n) Reply of LRPQ(n), sent from node Q to node P
NP Neighborhood set of node P
k Neighbor count in clockwise/counter-clockwise direc-

tion in the ring. |NP | = 2k
APQ Node P’s view of the arbitrator group for the pair (P,Q)
Arb(P → Q) Arbitration request send from node P, suspecting node

Q
Propose(ver :
P∗, Q)

Proposal message, send from node P to upgrade the
arbitrator-group APQ. P∗ is the proposed arbitrator-
group version-number.

TABLE I
Symbols used throughout the paper.

1. Lease-Based Monitoring: We describe the leasing scheme
in detail, and an example is depicted in Fig. 2. Consider a lease
LPQ between a monitor node P and its monitored node Q. The
protocol for maintaining and renewing the lease consists of
consecutive, monotonically increasing, non-overlapping leasing
sessions (LPQ(∗)), each lasting for a duration of Tl time units.
Initially, at P, the status of both node Q and lease LPQ are
Alive. At the beginning of the nth leasing session LPQ(n),
node P sends a Lease Request LRPQ(n) to node Q and marks
the lease session’s status as Pending. If node P receives the
ack ACKPQ(n) in a timely manner, the status of the leasing
session is changed to Established.

At the end of the ongoing leasing session (Tl time units after
LRPQ(n) was sent) node P checks the session’s status and
initiates the (n+1)th leasing session only if the current status
is marked as Established. On the other hand, if the status still
remains as Pending then this is a timeout and ACKPQ(n)

was not received–then node P terminates the lease LPQ and
marks STATUS(LPQ(n)) = Timeout. It also considers node
Q as a Suspected node.

Fig. 2. Lease based monitoring. Monitor node P maintains lease
LPQ with its monitored node Q.

Monitoring relationships are symmetric, stated formally as:

Rule 1 (Symmetric Monitoring (SM)). Neighbor nodes P and
Q independently establish leases to each other: LPQ and LQP .
Without loss of generality, if LPQ(n) times out, then P ignores
all subsequent LRQP (∗) lease requests arising from Q.



Algorithm 1 Monitor-Arbitrator Protocol: Arbitrator Actions
1: Input: Arbitrator receives arb. request Arb(P → Q)
2: if arbitrator has been up for less than Tarb time units then
3: Recently-Failed ← (P ∪ Q ∪ Recently-Failed)
4: return reject
5: else if node P ∈ Recently-Failed list then
6: return reject
7: else if node Q ∈ Recently-Failed list then
8: return accept
9: else // First Come First Serve approach

10: Recently-Failed ← (Q ∪ Recently-Failed)
11: return accept
12: end if

2a. Failure Detection: If P’s lease request to Q times out, P
detects Q as failed and marks node Q as Suspected.

However, the lack of further knowledge makes it impossible
to draw an accurate conclusion about the suspected node’s
current status. This is one of the fundamental limitations of
failure detection in asynchronous systems. Node Q could have
been Suspected due to a plethora of reasons: i) The lease-
request from node P was lost; ii) The ack from node Q was
lost; iii) Slow or flaky network prevented the lease-request/ack
from arriving in time; iv) Node Q actually died; v) Nodes
P and Q are partitioned out. As such, it is possible that P
and Q (and perhaps other mutual monitors) concurrently and
contradictorily suspect each other.

In order to resolve such conflicts, when a node P detects
Q as Suspected, it does not take failure recovery actions right
away (e.g., reorganize the ring). Instead, P moves to a Failure
Decision mode in order to confirm Q’s failure.
2b. Failure Decision: Failure Decisions are done via a
centralized group of nodes called as arbitrator-nodes. If a
failure detection of Q by P is confirmed by the arbitrator-
group, then this implies P has permission to recover from Q’s
failure: P can remove Q from its view of the ring, claim some
of Q’s keys, etc.

Rule 2 (Arbitration Request). If two nodes (P,Q) maintain
Symmetric Monitoring and (without loss of generality), LPQ

times out, then Node P immediately sends an arbitration
request Arb(P → Q) to the arbitrator group. If it receives
no response from the arbitrators within Ta time units (Ta is a
fixed parameter system-wide), P voluntarily leaves the system.
Otherwise it obeys the arbitrator group’s decision. Arbitrators
follow Algo. 1.

3. The Arbitrator-Group: The arbitrator-group acts as a
referee and provides failure decisions. Each arbitrator node
maintains small state but acts independently–there is zero
sharing across arbitrator-nodes. Each arbitrator-node maintains
a list, called Recently-Failed, which contains node IDs that it
has recently declared as dead. The list contains only failures
confirmed within a fixed recent time duration (Corollary 2).

Algo. 1 describes the actions taken by an arbitrator-node on
receiving a suspect request from P about Q. If this arbitrator
is new (e.g., a new joiner replacing a failed arbitrator), then

it rejects all requests and marks both suspecter and suspected
nodes as failed, and responds with a reject to P (Line 4).
This boostrapping rule is needed to ensure zero-sharing across
arbitrators, and avoid bad decisions by new arbitrators.

Otherwise, if the arbitrator is well-established, it checks if P
was recently declared dead–then its request is rejected and P
is again asked to leave the system (Line 6). If P is considered
alive but Q was recently marked as dead, then P’s request
is accepted (Line 8). Finally (Line 9) if both P and Q were
alive, then P’s request is accepted–this means that if P and
Q simultaneously suspected each other, the winner is the one
among them whose request arrives first at the arbitrator-node.
4. Obeying the Arbitrator-Nodes’ Decisions: Once node P
detects a failure of Q, it sends arbitration requests individually
to each arbitrator-node and awaits responses for Ta time units.
A request to an arbitrator-node results is one of three outcomes:
accept, reject or timeout (Algo. 1). After receiving all responses
or after Ta time units–whichever occurs earlier–P marks Q as
failed if and only if a majority of arbitrator-nodes (quorum
in arbitrator-group) responded with an accept vote. Notice
that arbitrator-nodes respond independent of each other and
do not need to coordinate among each other. Consequently,
after a wait of (2Tl + Ta) time units since P sent arbitration
requests (this wait time is calculated in Corollary 3), P can
safely assume that the suspected node Q has left the system.
Thereafter P can take actions to recover from Q’s failure.

Otherwise, if a majority of P’s arbitration requests result in a
response that is in (reject OR timeout), then P voluntarily leaves
the system. In this way, P sacrifices itself for the consistency
of the system’s failure decisions. We call such departures as
forced departures, and later our experiments will measure them.
While undesirable, forced departures are a crucial mechanism
needed to maintain membership-consistency across the system.

I V. N E W D I S T R I B U T E D A R B I T R AT O R - B A S E D
C O N S I S T E N T FA I L U R E D E T E C T O R

The downsides of the algorithm described in Sec. III [28],
[45] arise from the use of the central arbitrator-group. During
periods marked by a large number of node failures, arbitrator-
nodes may become congested by a high volume of requests,
causing timeouts at requesting nodes. If a majority of arbitrator-
nodes are slow or faulty, all suspecting nodes will be forced to
leave the group, causing massive forced departures of healthy
nodes. Additionally, failed arbitrators need to be replaced
manually in the original protocol (this is also true in Zookeeper
via “rolling-restart”)—our protocol allows automated arbitrator
replacement, as they are chosen in a self-stabilizing way from
alive nodes.

To address these issues, we decentralize the arbitrator-group
itself. The key idea is to eschew having a fixed set of arbitrator-
nodes. Instead, we allow each pair of monitoring nodes (P, Q) to
select its own arbitrator-group. The challenge is to ensure that
this is done in a way that retains correctness of the membership.
This arbitration selection mechanism is our first contribution.
Our second contribution is handling changes in the arbitrator-
group itself–because of failures or departures, the arbitrator-



group’s membership cannot stay static, and needs to be changed
over time. These two contributions are then combined with the
leasing protocol (Fig. 2) and the Monitor-Arbitrator protocol
from Algo. 1 to produce our overall membership protocol.

A. Decentralized Arbitrator Selection

Eliminating the centralized arbitrators would be straightfor-
ward had they been fully stateless. We observe first that the
only state an arbitrator-node maintains is the Recently-Failed
list (Section III–The Arbitrator-Group).

We note that at a minimum, to maintain consistency, this
Recently-Failed list needs to be checked only upon mutually-
conflicting failures. That is, only under circumstances when
P suspects Q, and Q suspects P, and thus both P and Q send
arbitration requests. For all other requests (e.g., R suspects P
after P has suspected Q), the Recently-Failed list minimizes the
number of forced detections, but is not required for consistency.

Using this observation we eliminate the arbitrator-nodes as
follows: we replace them with a subgroup of nodes chosen for
pairwise arbitration. That is, we use a separate arbitrator-group
for every pair of monitoring (neighbor) nodes P and Q. Later,
our experiments will show that this does not cause an increase
in forced departures.

Fig. 3. Pairwise Arbitrator Group Formation Strategy.

Fig. 3 depicts our pairwise arbitrator-group formation strat-
egy via an example. The pairwise arbitrator setAPQ maintained
at P for the pair (P, Q) consists of P, Q, as well as their
respective sets of neighbors (in the ring) NP , NQ. Formally:

APQ = AQP = P ∪NP ∪Q ∪NQ (1)

Both P and Q maintain this mutual arbitrator list, and if their
mutual leases expire, they refer to APQ and AQP respectively
for the Failure Decision.

B. Dynamic Arbitrator-Groups

Maintaining Consistency Between APQ and AQP : Node
P and Q must maintain a consistent view of APQ and AQP .
Otherwise, in case of failure there is the risk that P and
Q consult with two different set of arbitrator-nodes–these
partially-overlapping/non-overlapping arbitrator-groups might
independently accept both P and Q’s arbitration requests,
causing both P and Q to stay in the system but believing
each other is failed.

At any time P’s neighborhood NP might change to
NP (ver:P1) (because of node join/leave/failure, etc.). Therefore,
to reflect the new neighborhood, APQ needs to be upgraded
to a new version, denoted as APQ(ver:P1). However, node Q
might not immediately be aware of node P’s neighborhood
change. Therefore, an immediate upgrade of APQ might cause
inconsistency between APQ and AQP .

Safe and Consistent Arbitrator-Group Upgrade Proto-
col: We use a novel approach that seamlessly upgrades the

Fig. 4. Safe and Consistent Arbitrator Group Upgrade Strategy.
For simplicity all lease requests initiated from node Q (LRQP (∗))
and their corresponding ACKs are omitted.

pair-wise arbitrator-groups and prevents inconsistency between
them. Whenever P needs to upgrade the current arbitrator-group
for Q, it follows a two-phase protocol that leverages the current
arbitrator-group APQ in order to perform a safe and consistent
upgrade. This is depicted via an example in Fig. 4, and we
describe the phases below.

Phase 1: Before upgrading the arbitrator-group from APQ

to APQ(ver:P1), P sends an arbitrator-group upgrade proposal
Propose(ver : P1, Q) to its current arbitrator-group APQ

(Fig. 4:#1). The proposal contains the new arbitrator-group
version-number proposed by P (in this case P1). These
arbitrator-nodes record the proposal, and respond with acks.
This results in one of three outcomes. These outcomes and P’s
subsequent actions are as follows:

1) The majority times out: Node P voluntarily leaves.
2) The majority rejects: Node P aborts the current arbitra-

tion change attempt and retries later.
3) The majority accepts: Node P upgrades the arbitrator-

group and sends an explicit arbitrator-group upgrade
confirmation message ArbUpgrd(NP (ver:P1)) to Q
(Fig. 4:#2). This message contains the updated neighbor-
hood NP (ver:P1) and the current arbitrator-group version-
number P1. Node Q uses NP (ver:P1) to upgrade AQP

and attaches the new arbitrator-group version-number
along with its future arbitration requests.

Phase 2: This phase piggybacks the arbitrator-group up-
grade confirmation message with the next scheduled lease-
request/ack and thus implicitly notifies Q about the arbitration-
group change (Fig. 4:#3). This redundant phase ensures
that even if the previous explicit arbitrator-group upgrade
confirmation message was lost, the next lease-request/ack will
convey it. In other words, if P and Q continue to maintain
successful leases into the future, then the arbitrator-group
upgrade information will be propagated to Q within 2Tl time
units after P upgrades its arbitrator-group (Theorem 1).

Modified Arbitration Policy: Arbitrator-nodes perform
normal request processing based on Algo. 1. In addition,
arbitrator-group members need to deal with the arbitrator-group
upgrade proposals as follows: when an arbitrator-node receives
the arbitrator-group upgrade proposal from node P (i.e.,
Propose(ver : P1, Q)), it checks if it has seen any arbitration-
group upgrade proposal from Q (i.e., Propose(ver : Q∗, P )),
or an arbitration request Arb(Q→ P ) from node Q since the
last Tarb time units (Corollary 2). If any of these is true, the



arbitrator-node rejects the request. Otherwise it locally stores
the current version (P1) for APQ and replies an accept to P.

Handling the stale arbitrator-group in node Q: However,
in a rare scenario Q might detect P as failed just before
receiving the arbitrator-group upgrade message. In that case Q
sends the arbitration request to the old arbitrator-group along
with the old arbitrator-group version-number. Because at least
majority of the old arbitrator-group has already accepted node
P’s arbitrator-group change request, they detect and reject
Q’s stale arbitration request. Therefore, in the case of such
inconsistency, Q gracefully leaves the system.

Recently-Failed List: In the decentralized version, a node
C that belongs to the arbitrator set for a pair of nodes (P, Q)
still keeps a finite Recently-Failed list. This list consists of at
most two entries: whether P was previously marked as dead
(and when), and whether Q was previously marked as dead
(and when). Unlike the Recently-Failed list in the centralized
protocol (Sec. III) which could be arbitrarily long, our Recently-
Failed lists are limited in size to 2 entries. Further, since each
node has 2k arbitrator sets and each such set has at-worst
4k members, by symmetry each node participates in at-most
2k × 4k = 8k2 arbitrator sets.

V. N O D E J O I N P R O T O C O L U N D E R D E C E N T R A L I Z E D
A R B I T R AT O R S

Because we have replaced the central arbitrator with a
decentralized arbitrator, we need to design a new node join
protocol to keep the required state consistent. This is is a
four-phase protocol.

Phase 1 (Neighbor Discovery): The candidate joining node
(say node C) sends a neighbor discovery request to that node
Q which currently owns the key C. (The consistent ring routing
algorithm described in [28] can be used for this).

If Q is currently serving another node join request, it rejects
node C’s request (C can retry). Otherwise Q replies with accept–
this reply also piggybacks Q’s current neighbor set NQ.

In the case of time out or rejection, node C backs-off and
retries later. Otherwise it moves forward by using the NQ set
to calculate its own potential neighborhood set NC . This is
feasible because NC is always a subset of (Q ∪NQ) (Fig. 5).

Fig. 5. Calculating the potential neighborhood. The ring-member
node 17 currently holds the key 16. Neighbor count per direction,
k = 2. The candidate node (node 16) gets the key holder’s current
neighborhood set N17 = {11, 13, 19, 23}. Node 16’s potential
neighbourhood set would be N16 = {11, 13, 17, 19}.

Phase 2 (Lock Request): For correctness, our protocol
needs to ensure that prospective neighbors (monitors) of the
joining node are not involved in processing another node join.
Hence joining node C next sends a lock request to all of its
2k potential neighbors, NC (Fig. 6). A node receiving this
lock request rejects the request only if it is actively processing
another node join. Otherwise the lock is granted for the next

(3 · Tl) time units (time to finish Phases 2-4). If C can acquire
all the locks in time, it moves to Phase 3. Otherwise, it releases
all the established locks, backs off and retries from Phase 1.

Fig. 6. Node join protocol (initiated from the candidate node C).
For simplicity, Phase 1 is omitted and only one neighbor is shown.

Phase 3 (Lease Invitation): Node C establishes independent
leases LC∗ and sends the first lease requests LRC∗(1) to all
members of NC . It piggybacks its current potential neighbor-
hood set NC (this is used by C’s neighbor P to create the
mutual arbitrator list APC based on Equation 1).

Once a neighbor (node P) receives the first lease request
LRCP (1) it prepares the acknowledgement ACKCP (1) and
initiates the symmetrically-opposite lease LPC for node C. It
piggybacks both the symmetrically-opposite first lease request
LRPC(1) and its current neighbor set NP with the ack message.

Node P also records the arbitrator set for its relationship
with C: APC = P ∪NP ∪C∪NC , and marks the arbitrator-set
as dormant. Dormant means that if the lease LPC times out,
instead of involving the arbitrator group APC , node P will
clean-up the lease and neither send further lease requests to C
nor response to any of C’s future lease-requests.

Upon receiving the incoming ack ACKCP (1), node C gets
the new lease request from P, LRPC(1) and P’s neighborhood
set NP . At this point node C continues the Symmetric
Monitoring according to Rule 1 in Sec. III. C sends back
ACKPC(1) to P. Besides, C also prepares the arbitrator set
ACP = C ∪ {NC} ∪ P ∪ {NP }, and marks this as dormant.

If at least a single lease request with any of its neighbors
times out, node C discards all the established leases LC∗, backs
off and retries again starting from Phase 1. If a neighbor (say
node P) has already established a lease LPC , that lease will
also automatically time out at P (since node C will not reply
back eventually). At node P, the arbitrator-group APC has
still been marked as dormant. Therefore, instead of involving
the arbitrator-group, Node P merely deletes the timed-out
lease LPC , i.e., it does not attempt to renew this lease in the
future. Otherwise, if C and each of its neighbors P successfully
establish symmetric leases in this 1st session LC∗(1), then C
moves to Phase 4.

Phase 4 (Wrap-up): Node C sends the 2nd lease request
LRC∗(2) to all of its neighbors. Once LRCP (2) is received,
the neighbor P can safely assume that C has successfully
established the Symmetric Monitoring (Rule 1) with the
members of NC , hence safely marks the arbitrator group APC

as active. Therefore, from now on whenever the lease LPC

times out, P will consult with the APC for failure decision.
Once node C establishes the 2nd leasing session with all of its

neighbors and receives all the corresponding acks (ACKC∗(2)),



it considers itself as an active ring member and marks the
corresponding arbitrator-groups (AC∗) as active. At this point,
the failure detection and decision algorithms specified in
Section III can be used between P and C.

V I . T H E O R E T I C A L A N A LY S I S

We analyze correctness of: A) our decentralized (and thus
the original centralized) arbitrator approach, B) our node join
protocol, and C) overheads.
A. Decentralized Arbitrators

We first analyze our fully-decentralized failure detector from
Sec. IV. Unless noted otherwise, our theorems below also apply
to the original Service Fabric failure detector (centralized)
from Section III and [28]. This is a side-contribution of
our paper, because the original Service Fabric paper [28]
(and its based-on white papers/patents [24], [29]) did not
come associated with rigorous analysis—we thus prove their
previously-held hypotheses. Our first theorem is specific to our
new decentralized arbitrator.

Theorem 1 (Maximum Inconsistency Interval Between Ar-
bitrator-groups APQ and AQP ). Consider neighbors P and
Q. Say P successfully upgrades the arbitrator-group APQ at
absolute time T . If the lease LPQ stays established for long
enough into the future, then: Q will reflect the upgrade by time
T + 2Tl.

Proof. To upgrade the arbitrator-group APQ, node P follows
a two-step process (Fig. 4). Let upgrade time T occur
in the mth leasing session LPQ(m). P sends an explicit
confirmation ArbUpgrd(NP (ver∗)) to node Q. However, this
explicit message might get lost in the network. Yet, because
ArbUpgrd(NP (ver∗)) will be piggybacked with the next sub-
sequent request, if P and Q’s mutual leases stay correct for long
enough into the future, this next lease request for LPQ(m+1)

will succeed and will communicate ArbUpgrd(NP (ver∗)) to
Q. Hence Q will upgrade its view of the arbitrator-group AQP .
Therefore, Q knows about the upgrade by time T + 2Tl.

The following results hold for both the new decentralized
version and the centralized version of arbitrators.

Next we analyze failure detection times. For a given node
Q, define its failure detection time (TFD) as the time between
Q’s failure occurring and all of Q’s monitors suspecting Q.

Theorem 2 (Failure Detection Time). When a node Q fails
and at least one of its monitors is alive, then: TFD is bounded
from both below and above, as: Tl ≤ TFD < 2Tl.

Proof. A pair of ring neighbors, node Q and node P maintains
the Symmetric Monitoring (Rule 1). Let Q be the failing node
and P be the alive monitor. Further, let Q fail during P’s nth

lease period for Q, and the failure occurs β time units after
the start of that lease period.

1) Node P initiates the nth leasing session LPQ(n) and sends
the leasing request LRPQ(n).

2) Node Q receives the lease request and replies back with
ACKPQ(n). After sending this response, Q crashes.

3) Node P receives the ACKPQ(n) in time and marks the nth

leasing session as established. Once the current session
completes (which takes Tl time units since the lease
request), P initiates the (n+ 1)th leasing session.

4) However, as node Q has been crashed, node P’s (n+1)th

session with Q will timeout after a further Tl time units.
Starting from the point when node Q crashes, the time left at

the nth leasing session LPQ(n) is (Tl−β). Node P detects the
failure at the end of the (n+ 1)th leasing session. Therefore,
the failure detection time TFD = (Tl − β) + Tl. But since
β ∈ (0, Tl], hence we have Tl ≤ TFD < 2Tl.

Next we analyze how long it takes for two neighbors to
mutually suspect each other.

Theorem 3 (Symmetric Lease Timeout). The Symmetric
Monitoring (Rule 1) between a pair of nodes P and Q consists
of two independent leases: LPQ and LQP respectively. Without
loss of generality, assume LPQ times out first. From that point
onwards, if it takes TLT time unit to time out LQP , then:
Tl ≤ TLT < 2Tl.

Proof. The run consists of the following steps:
1) Node P detects the time out of LPQ at absolute time

T and starts rejecting any future lease requests from Q
(Rule 1).

2) At Q, let LQP (m) be the ongoing leasing session that starts
just before T and receives the corresponding ACKQP (m).

3) Starting from T , the time left to finish the ongoing mth

leasing session is Tb (< Tl).
4) As the mth session was a success, Q initiates the next

session and sends the lease request LRQP (m+1) to P.
5) However, since node P is already rejecting all of node Q’s

future leasing requests, this (m+ 1)th leasing session at
node Q (for P) will timeout after a further Tl time units
and node Q will finally mark the lease LQP as timed out.

Therefore, starting from the moment when P first detects the
lease timeout of LPQ, Q will also detect the timeout of LQP no
more than (Tb+Tl) time units. As Tb ∈ [0, Tl), hence the lease
timeout interval TLT is bounded by Tl ≤ TLT < 2Tl.

Corollary 1 (Mutual Arbitration Requests). Given two neigh-
bors P and Q, if P suspects Q and sends an arbitration request,
then: within another TarbReqInt time units, Q will also send
an arbitration request suspecting P. Tl ≤ TarbReqInt < 2Tl.

As soon as the lease LPQ times out, P immediately sends an
arbitration request suspecting Q (Rule 2). However, according
to Theorem 3, LQP also times out within TLT time units
and Q immediately sends an arbitration request suspecting P.
The interval (TarbReqInt) between the two arbitration requests
coincides with TLT . Hence Tl ≤ TarbReqInt < 2Tl.

We now analyze how long a suspected node can survive.

Theorem 4 (Maximum Lifespan of a Suspected Node). Let
Q be suspected by a monitor P, and thus Q is forced to leave
the system. Starting from the moment when node Q is first
suspected by node P, the suspected node can stay in the system
no later than TmaxLifespan < (2Tl + Ta) time units.



Proof. As soon as the lease LPQ times out, P suspects Q
and makes an arbitration request. Due to the First Come First
Serve (FCFS) policy (Algo. 1), the arbitrator accepts that
request. Q may also send an arbitration request no later than
2Tl (Corollary 1) time units after, and awaits the response. The
arbitrator will reject the request due to FCFS. Two cases arise:

1) If node Q successfully receives the rejection it will
immediately leave the system.

2) If the arbitration request times out (after Ta time units),
node Q will leave the system (Rule 2).

Starting from the failure detection at node P, the suspected
node (node Q) can stay in the system for at most (TarbReqInt+
Ta) time units. Therefore, the maximum possible time that
node Q can stay in the system is bounded from above as:
TmaxLifespan < (2Tl + Ta).

Corollary 2 (Arbitrator can safely remove any entry older than
Tarb = (2Tl + Ta) from the Recently-Failed list). A pair of
ring neighbors, node P and Q is maintaining the Symmetric
Monitoring (Rule 1). Without loss of generality, node P suspects
Q first and sends an arbitration request.

Once node P suspects Q, starting from that time, node Q
can stay in the system for at most TmaxLifespan = 2Tl + Ta
time units (Theorem 4). Therefore, it is guaranteed that if the
arbitrator receives P’s request at absolute time T , at T +
TmaxLifespan time units node Q must leave the system. Hence,
the arbitrator can safely remove entries from the Recently-
Failed list that are older than Tarb = 2Tl + Ta.

Corollary 3 (Safe time to Start Failure Recovery). Given two
neighbors P and Q, if P suspects Q (failure detection) and
the arbitrator agrees with it (failure decision), then: node P
should wait for (2Tl + Ta) time-span to safely declare node
Q as dead, and start any recovery actions.

As Theorem 4 points, if node Q is suspected by node P at
time T , counting from that time, node Q can stay in the system
for at most TmaxLifespan = (2Tl + Ta) time units. Therefore,
node P should wait for at least that time units before finally
considering node Q as dead.

Finally, we can state that our protocol (as well as the
centralized protocol of Section III and [28]) satisfy the time-
based consistency that we outlined in Section I:

Theorem 5 (Time-based Consistency). The decentralized
(and centralized) arbitrator-based failure detection protocol
maintains time-based consistency, as defined in Section I.
Concretely, after a node Q fails, within another (Ta + 4Tl)
time units two conditions are true: i) Q leaves the system, and
ii) all of Q’s monitors know about Q’s failure.

Proof. When Q crashes, an alive monitor node P will detect it
within TFD time units where Tl ≤ TFD < 2Tl (Theorem 2).
However, node P has to wait for another (2Tl + Ta) time
units to safely mark node Q as dead (Theorem 4 ). Therefore,
(Ta + 4Tl) after node Q’s failure, Q has left the system and
all its monitors can start recovery actions.

B. Node Join Protocol Correctness
Next we analyze the Node Join protocol of Section V.

Theorem 6 (Correctness of Single Node Join under Failures).
The Node Join Protocol for a given joining node maintains
consistent membership lists in spite of failures.

Proof. If any of the monitors of a joining node C fails at any
point before the specific instant of time that C has successfully
established the second leasing session with all of its monitors,
then C will time out in one of the above phases, and gracefully
leave the system. Subsequently, monitors will also release their
locks after the 3Tl timespan. If on the other hand, C fails after
it has finished Phase 4, our normal failure detection mechanism
(Sec. IV combined with Sec. III ) will detect C’s failure.

Theorem 7 (Correctness under Multiple Node Joins). The
Node Join Protocol Maintains consistent membership lists in
spite of multiple nodes joining simultaneously.

Proof. Because a joining node C first acquires locks on
its potential monitors, no other joining nodes share the
same monitors (neighbors) as C. Thus, our protocol allows
simultaneous joining nodes if and only if their neighbor sets
(monitor sets) are disjoint. Together with Theorem 6, this
maintains consistency.

Theorem 8 (Time-bounded Node Join). When there are no
failures or dropped messages, then: a new joining node, after
Phase 1, finishes joining in another 3 · Tl time units.

Proof. Each of the remaining Phases 2-4 take Tl time units.
Hence node joining finishes in 3 · Tl time units.

C. Overhead and Downsides
Leasing Message Overhead: The leasing messages com-

prise of both lease-requests from any node P to Q (LRPQ(∗))
and the corresponding acks (ACKPQ(∗)). The number of
leasing messages per second, per node, is calculated as:

2× (2k)× 1

Tl
(2)

This equation shows that the leasing message overhead per
node scales with system size. Additionally, Tl represents a
tradeoff between overhead and detection time: selecting a
smaller Tl ensures faster failure detection, but also means
frequent lease renewals and more stabilization messages.

Partitioning Behavior: Finally, in the interest of complete-
ness of analysis, we observe that arbitrator-based approaches
cannot avoid the well-known partitioning problem inherent
to group membership systems. Both the centralized and
decentralized arbitration schemes (Sec. III, IV) are susceptible
to collapse when the network is partitioned. In the centralized
version, in the worst case, if none of the partitions has a quorum
number of arbitrators, nodes detect failures of their neighbors in
the other partitions, but are unable to obtain a quorum number
of arbitrator responses, and therefore leave the system. These
forced departures cascade, and eventually everyone leaves the
system. The decentralized version also suffers from the same
forced departure + cascading failure behavior.



V I I . E VA L U AT I O N

We implemented the decentralized arbitrator-based failure de-
tector in both: 1) a simulator, and 2) a real Java implementation,
which we run on the Emulab cluster [16].

A. Impact of Arbitrator Failure (Simulation)

Fig. 7. Impact of Arbitrator Failure. X axis represents the
arbitrator + regular node kill event. Y axis shows the total number
of arbitrator/regular node in the system.

Fig. 7 shows, via simulation, the impact of an arbitrator
crash for two different systems: CA which uses the Centralized
arbitrator from Service Fabric [28], and DA which is our
scheme. The ring consists of 32 nodes, and the CA variant
uses a set of 5 arbitrators. The DA uses 6 monitors per node.

The X-axis shows crash events–at each event, 2 nodes are
killed: in CA, a member-node and an arbitrator-node; in DA,
two random nodes. The Y-axis shows the active node count.

We observe that the original CA scheme is tolerant only up to
2 arbitrator failures. With 3 or more arbitrator failures, there are
insufficient number of arbitrators left to make failure decisions,
and as a result all nodes voluntarily leave the system, and the
ring size (system size) drops to 0 quickly. In comparison, our
DA scheme maintains a stable system size, which drops only
by the number of crashed nodes.

In summary, we conclude that the distributed arbitrator based
scheme is more resilient to arbitrator failure.

B. Failure Detection Accuracy (Emulab)
Next we measure whether failing nodes affect detection

accuracy of otherwise healthy nodes. The main concern here is
detection cascades, wherein failing or leaving nodes cause other
nodes in the neighborhood to also voluntarily leave, due to the
timeouts involved in leasing and/or arbitration. Furthermore,
because our algorithm is decentralized, it is plausible to assume
that such cascading failures may be exacerbated compared to
the centralized version. This experiment implicitly measures
the effect of this behavior.

Fig. 8. Failure Detection Accuracy. X axis shows the number of
nodes failed simultaneously. Y axis shows the total active node count
in the system.

We deploy a 64-member group in an EmuLab cluster with
5 d710 nodes [13]. Each node consists of one 2.4 GHz 64-bit

Quad Core Xeon processor, 8MB L3 cache, 12 GB DDR2
Ram. The 64 nodes are in a ring, with 3 successors and 3
predecessors (thus a total of 6 monitors each).

In Fig. 8 we progressively kill a group of randomly-selected
nodes. The x-axis shows these simultaneous failure events.
Thus this plot is a timeline plot (without showing the time).
The y-axis shows the number of alive nodes left after the
detections+decisions have stabilized, after each failure event.

Fig. 8 shows that, at the very first event when only one node
failed, the total alive node count becomes 63. This indicates
that only the failed node leaves, and there are no additional
or cascading departures. As the reader can observe, for each
subsequent failure event, the marginal reduction in system size
is identical to the number of failing nodes.

In summary, this experiment validates the desirable behavior
that failures are detected accurately, and do not force further
departures of nodes due to cascades.

C. Arbitrator Message Overhead (Simulation)

One of the goals of the decentralized scheme was to reduce
load on the arbitrators. This is important as it keeps arbitrators
fast and responding timely, and reduces risk of arbitration
requestors timing out.

We run a simulation with a ring consists of total 1000 nodes.
First we run the centralized scheme with α = 9 arbitrator
nodes. Neighbor count in each direction of the ring (clockwise
and anticlockwise) is k = 3. f = 100 randomly selected nodes
were failed sequentially. The interval between two consecutive
failures was sufficient to bring the stability back into the system.

Each failure causes 2k arbitration requests at each of the α
arbitrator nodes, creating an overhead of (2 · k · f · α). This
implies a total of 600 messages per arbitrator node.

Fig. 9. Incoming Arbitration Requests: CDF. Our decentralized
scheme distributes arbitration requests among 1000 nodes. The
maximum number of arbitration requests received by a node is 24.

In comparison, Fig. 9 shows that our decentralized scheme
imposes a much lower overhead, and creates no bottlenecks.
In this scheme, the arbitrator group size varies from (2 + 2k)
to (1 + 3k) (depending on how far the monitoring nodes are
from each other in the ring). The figure shows that 80% of the
nodes receive fewer than 10 arbitration requests. The average
is 5.4 arbitration requests per node, and the worst case is 24.

We conclude that compared to the centralized scheme, our
decentralized approach reduces worst-case arbitration message
overhead by at least two orders of magnitude.



Fig. 10. Node Join Latency. k = neighbor count in each direction.
j = total number of nodes tried to join simultaneously. The node
joining time increases if any of the k or j increases. As the ring
grows, the node joining time decreases.

D. Node Join Latency (Simulation)

We use our simulation to measure the speed of our Node
Join algorithm from Section V. Fig. 10 shows the node join
time (normalized with respect to Tl) for different ring sizes
(x-axis is logarithmic in ring size) and different values of k, and
j the total number of nodes attempting to join simultaneously.
Nodes attempt to join at random positions in the ring. We
observe that:

1) Increasing ring size reduces latency because it spreads
out the joining load more. The minimum node join time
4Tl arises from the 4-phase node join procedure.

2) Latency increases with the number of monitors (2k)
(fixing ring size and j) because joining nodes need to
coordinate with more ring neighbors (Phase 2 of the node
join protocol described in Sec. V).

3) Increasing the number of simultaneous joiners increases
latency because of the locking involved in the joining
process, which causes contention and some waiting.

In summary, we conclude that node join latencies scale very
well and decrease with ring size, and are able to accommodate
simultaneously joining nodes.

E. Failure Detection Time (Emulab)

Fig. 11 depicts the failure detection time (normalized with
respect to Tl). We use the same EmuLab deployment described
above, and vary Tl from 32 ms to 1.024 s.

Fig. 11. Failure Detection Time vs. Leasing Interval Tl. Candle-
stick plots show the 1st, 2nd and 3rd quartiles and the average (X’s
on plot). Y-axis normalized w.r.t. Tl.

The failure detection time TFD is bounded according to our
proved result in Theorem 2. That is, Tl ≤ TFD < 2Tl. On
average, it takes around (1.5 · Tl) time to detect a failure.

V I I I . R E L AT E D W O R K

The key component of a membership protocol is the failure
detector. The formal characterization of the properties of failure

detectors was first offered by Chandra and Toueg [11] where
they also showed that it is impossible for a failure detector
algorithm to deterministically achieve both completeness and
accuracy over an asynchronous unreliable network.

Chandra and Toueg’s impossibility result [11] says that one
cannot design a failure detector in an asynchronous network
that both detects all failures (completeness) and makes no
mistakes (accuracy). Subsequent failure detectors [1], [3], [7],
[12], [19], [20], [49] choose to satisfy completeness because
of the need for correct failure recovery, and they attempt to
optimize accuracy (reduce false positives). Reliable failure
detectors include Falcon [32] with sub-second detection times,
but the paper states that this protocol does not scale.

Virtual Synchrony and similar approaches [5], [10], [22]
offer totally-ordered and consistent membership view. How-
ever, members of this protocol family suffer from scalability
limitations.

Among weakly consistent protocol are gossip-style heartbeat-
ing [48], [49] and SWIM [14]. SWIM uses random pinging for
failure detection, and piggybacks failure notifications atop such
pings and acks. Such probabilistic membership approaches are
used in Cassandra [25], Akka [2], ScyllaDB [43], Serf [44],
Redis Cluster [40], Orleans [37], Uber’s Ringpop [41], Netflix’s
Dynomite [36], Amazon Dynamo [15], etc.

A widely used approach to achieve the consistent member-
ship is to store the membership list in an auxiliary service
such as Chubby [8], Etcd [17], ZooKeeper [26] etc. Offloading
is attractive but increases the dependence on a small set of
nodes. Under congestion or failure of a quorum of these special
nodes, the membership service is completely unavailable. In
comparison, in our system, even under an arbitrary number of
failures, membership lists remain available.

Rapid [46] is an interesting protocol that can detect partitions
(i.e., cuts). We believe Rapid can be orthogonally combined
with our decentralized arbitrator-based failure detector.

I X . S U M M A RY

We have presented the design of a new fully-decentralized
membership protocol that maintains strong time-based consis-
tency of membership lists. Where past work relied on a central
group of arbitrators to referee decisions and conflicts on failure
detections, our approach fully decentralizes this arbitrator set.
Via formal analysis, we proved important correctness and
consistency properties of our scheme, and some of these
results prove previously-held hypotheses about the centralized
arbitrator scheme. Via both simulation and cluster deployment,
we showed that our decentralized membership protocol: 1)
minimizes forced departures of healthy nodes, 2) avoids failure
cascades, 3) significantly reduces arbitration message overhead
vs. centralized scheme, 4) incurs latency that decreases with
system size, and 5) detects failures quickly.
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