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Abstract
Smart environments (homes, factories, hospitals, buildings)

contain an increasing number of IoT devices, making them

complex to manage. Today, in smart homes when users or

triggers initiate routines (i.e., a sequence of commands), con-

current routines and device failures can cause incongruent

outcomes. We describe SafeHome, a system that provides

notions of atomicity and serial equivalence for smart homes.

Due to the human-facing nature of smart homes, SafeHome

offers a spectrum of visibility modelswhich trade off between

responsiveness vs. isolation of the smart home. We imple-

mented SafeHome and performed workload-driven experi-

ments. We find that a weak visibility model, called eventual
visibility, is almost as fast as today’s status quo (up to 23%

slower) and yet guarantees serially-equivalent end states.

CCSConcepts: •Computer systems organization→De-
pendable and fault-tolerant systems andnetworks;Re-
liability.
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1 Introduction
The disruptive smart home market is projected to grow from

$27B to $150B by 2024 [50, 67]. There is a wide diversity of
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devices—roughly 1,500 IoT vendors today [4], with the aver-

age home expected to contain over 50 smart devices by 2023

[43]. Smart devices cover all aspects of the home, from safety

(fire alarms, sensors, cameras), to doors+windows (e.g., auto-

mated shades), home+kitchen gadgets, HVAC+thermostats,

lighting, garden sprinkler systems, home security, and oth-

ers. Such diversity and scale are even vaster in other smart

environments such as smart buildings, smart factories (e.g.,

Industry 4.0 [45]), and smart hospitals [68].

As smart environments become increasingly more com-

plex and larger in scale, the chances of interactions leading to

undesirable outcomes increases. What is desperately needed

are systems that allow a group of users to manage their
smart home as a single entity [24] rather than a collection of

individual devices. Today, most users (whether in a smart

home or a smart factory) control a device using commands,
e.g., turn ON a light. Recently, major smart home controllers

have started to provide users the ability to create routines. A
routine is a sequence of commands [7, 37, 64, 82]. Routines

are useful for both: a) convenience, e.g., turn ON a group of

Living Room lights, then switch ON TV, and b) correct opera-

tion, e.g., CLOSE window, then turn ON AC. Routines enable a
high degree of automation, and can be triggered either by a

human or automatically, e.g., time-based, sensor-based, etc.

Today’s ad-hoc way of executing routines fails to satisfy

two natural expectations of human users. First, when a user

initiates a routine, the user expects it to execute in its entirety,

e.g., if the window is not closed, the AC should not turn on.

In other words, routines should execute Atomically–either
all the commands in a routine have an effect on the environ-

ment, or none of its commands do. Secondly, the execution

of one routine must not be impacted by another concurrent

routine, e.g., while a routine is taking out the garbage can,

another routine must not simultaneously attempt to close

the garage door. In other words, routines should be executed

in Isolation, i.e., with Serializability—the effect of a set of

concurrent routines, should be equivalent to executing the

routines one by one, in some sequential order.

We present SafeHome, a management system that pro-

vides atomicity and isolation among concurrent routines in a

smart environment. For concreteness, we focus the design of

SafeHome on smart homes (however, our evaluations look at

broader scenarios). SafeHome is intended to run at an edge

device in the smart home—e.g., a home hub or an enhanced
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access point—from where it can control devices. SafeHome

does not require additional logic on devices—instead, it is-

sues commands via the device’s APIs. Thus SafeHome can

work in homes containing devices from many vendors.

Assuring the properties of Atomicity and Isolation (Seri-

alizability) in smart homes needs us to tackle three unique

challenges. First, this is a human-facing environment. Every

action of a routine may be immediately visible to one or more

human users—we use the word “visible” to capture any ac-

tion that could be sensed by any user anywhere in the smart

home. This requires us to clearly specify and reason about

what we call visibility models for concurrent routines. Visi-
bility models capture the various flavours of serializability

and latency among routines, observed by the user.

Second, many commands can take extended periods of

time (seconds or minutes) to execute. This may arise be-

cause of either: i) the nature of the device, e.g., oven; or ii) a

user-specified action, e.g., running the water sprinkler for

15 minutes. Such commands cannot be treated merely as

two short commands (start and stop), as this still allows the

command to be interrupted by a concurrent routine in the

interim, violating isolation. We introduce the notion of a long
running command (or long command), a command which

exclusively controls a device for an extended duration of

time without interruption. A long running routine (or long

routine) is one that contains at least one long command. We

advocate that long commands/routines need to be treated as

first-class citizens in the design of a smart home system. Par-

ticularly, long routines increase the likelihood of concurrency

conflicts, creating tension between fast routine execution

(responsiveness) and the assurance of serializability.

Third, in a smart home, device crashes and restarts are the
norm—any device can fail at any point of time and possibly

recover later. Devices are rarely replicated or have a fall-back

mechanism. Therefore, reasoning about device failure/restart
events while ensuring atomicity+visibility models is a new

challenge. Today’s failure handling in smart homes is either

silent or places the burden of resolution on the user.

These challenges have been addressed piecemeal in smart

home/IoT literature. Some systems [25, 61] use priorities to

address concurrent device access. Others [8] propose mech-

anisms to handle failures. A few systems [9, 48, 52] formally

verify procedures. Transactuation [64] and APEX [86] dis-

cuss atomicity and isolation, yet their concrete techniques

deal with routine dependencies and do not consider users’

visibility experiences—nevertheless, these mechanisms can

be used orthogonally with SafeHome. None of the above

simultaneously address atomicity, failures, and visibility.

The reader may also notice parallels between our work

and the ACID properties (Atomicity, Consistency, Isolation,

and Durability) provided by transactional databases [58].

While parallels between sensor networks and databases exist

(TinyDB [49]), database ACID techniques do not translate

easily to smart homes. The primary reasons are the human-

facing aspect of the environment, device failures (DB objects

are easily replicated), and presence of long routines.

The primary contributions of this paper are:

1. New Visibility Models that trade off responsiveness

against temporary congruence of smart home state.

2. Introduction of long-running routines and new lock
leasing techniques to increase concurrency among rou-

tines, while guaranteeing isolation.

3. A new way to reason about failures by serializing fail-
ure and restart events into the serially-equivalent order.

4. Design and implementation of the SafeHome system,

and a workload-driven experimental evaluation.

2 Motivating Examples
Atomicity: Today’s best-effort way of executing routines

can lead to unwanted states in the home, as documented in

many smart home incidents [27, 41, 53, 56, 64]. Consider a

routine 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔 involving the AC and a smart window [28,

79]: 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔 = {CLOSE window; switch ON AC}. During the

execution of this routine, if either the window or the AC fails,

the end-state of the smart home will not be what the user

desired—either leaving the window open and AC on (wasting

energy), or the window closed and AC off (overheating the

home). Another example is a shipping warehouse wherein

a robot’s routine needs to retrieve an item, package it, and

attach an address label—all these actions are essential to ship

the item correctly. In these examples, lack of atomicity (all

or nothing execution) in the routine’s execution violates the

expected outcome.

Isolation/Serializability: Conflicts among routines are

common. A conflict occurs when more than one routine si-

multaneously touches the same given device. Auto-triggered

routines might conflict among each other. Human users may

start routines that conflict with either: 1) other auto routines,

or 2) other users’ routines, if the humans do not coordinate

a priori (e.g., verbally). Above all, the presence of long com-

mands, which take non-negligible time to execute, amplify

the chance of such conflicts.

Consider a timed routine 𝑅𝑡𝑟𝑎𝑠ℎ that executes every Mon-

day at 11 pm and takes several minutes to run: 𝑅𝑡𝑟𝑎𝑠ℎ={OPEN
garage; MOVE trash can out to driveway (a robotic trash can

like SmartCan [66]); CLOSE garage}. One Monday, the user

goes to bed around 11 pm, when she initiates a routine:

𝑅𝑔𝑜𝑜𝑑𝑛𝑖𝑔ℎ𝑡={switch OFF all outside lights; LOCK outside doors;

CLOSE garage}. Today’s state of the art has no isolation be-

tween the two routines, which could result in 𝑅𝑔𝑜𝑜𝑑𝑛𝑖𝑔ℎ𝑡 shut-

ting the garage (its last command) while 𝑅𝑡𝑟𝑎𝑠ℎ is executing

either: a) its first command (open garage), or b) its second

command (move trash can out). In both cases, 𝑅𝑡𝑟𝑎𝑠ℎ’s execu-

tion is incorrect, and equipment may be damaged (garage or

trash can). Alternatively, executing routines one-at-a-time

would mean the user has to wait several minutes to see

the lights are turned off, even though the lights are not the
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Figure 1. Concurrency causes incongruent end-state in a
real smart home deployment. Two routines R1 (turn ON all lights)
and R2 (turn OFF all lights) executed on a varying number of devices
(x axis), with routine R2 starting a little after R1 (different lines). Y
axis shows fraction of end states that are not serialized (i.e., all OFF,
or all ON). Experiments with TP-Link smart devices [78].

conflicting device. We refer to such a non-serialized state

(intermediate or end) of the home as an incongruent state. To
provide isolation/serializability, when 𝑅𝑡𝑟𝑎𝑠ℎ and 𝑅𝑔𝑜𝑜𝑑𝑛𝑖𝑔ℎ𝑡
complete successfully, doors should be locked, garage closed,

lights turned off, trash can in the driveway, and no equipment

damaged with minimal visible latency to the user.

Low latency is critical in user-facing scenarios like smart

homes because: (i) studies routinely show that cutting even

fractions of a second increases user engagement [18, 55, 60,

71], and (ii) for long routines, which run for many seconds or

minutes, latency reductions of even a few percentage points

are rather noticeable to the user.

Conflicts may occur even when routines contain no long

commands. Fig. 1 shows that two routines simultaneously

switching on/off a few devices cause incongruent outcomes

when they start close to each other. In all the above cases, iso-
lation semantics among concurrent routines were not being

specified cleanly or enforced which can: (a) violate human

expectations, and (b) cause device damage and failures [26].

3 Visibility and Atomicity
We first define SafeHome’s two key properties–Visibility and

Atomicity–and then expand on each.

• SafeHome-Visibility/Serializability: For simplicity, in

this initial part of the discussion we ignore failures, i.e.,

we assume devices are always up and responsive.

SafeHome-Visibility/Serializability means the effect of
the concurrent execution of a set of routines, is iden-

tical to an equivalent world where the same routines

all executed serially, in some order. The interpretation

of effect determines different flavors of visibility, e.g.,

identicality at every point of time, or in the end-state

(after all routines complete), or at critical points in the

execution. These choices determine the spectrum of visi-

bility/serializability models that we will discuss soon.
• SafeHome-Atomicity: After a routine has started, ei-

ther all its commands have the desired effect on the smart

home (i.e., routine completes), or the system aborts the
routine, resulting in a rollback of its commands, and gives

the user feedback.

3.1 New Visibility Models in SafeHome

SafeHome presents to the user family a choice in how the

effects of concurrent routines are visible. We use the term

“visibility” to capture all senses via which a human user,

anywhere in the environment, may experience immediate

activity of a device, i.e., sight, sound, smell, touch, and taste.

Studies show [24, 46] that it is key in a smart home to

optimize user-facing responsiveness metrics. Thus, we intro-
duce a new spectrum of visibility models that trade off the

amount of incongruence the user sees during execution,

against the user-perceived latency—all while guaranteeing

serial-equivalence of the overall execution.

Visibility models that are more strict, run routines sequen-

tially, and thus may suffer from longer end-to-end latencies

between initiating a routine and its completion (henceforth

we refer to this simply as latency). Models withweaker visibil-

ity offer shorter latencies, but need careful design to ensure

the end state of the smart home is congruent (correct). Our

weak(ened) visibility models can be considered a counterpart

of the rich legacy of weak consistency models existing in

mobile systems like Coda [44], databases like Bayou [72] and

NoSQL [80], and shared memory multiprocessors [1].

Today’s default approach is to execute routines’ com-

mands as they arrive, as quickly as possible, without paying

attention to serialization or visibility. We call this status quo
model as theWeak Visibility (WV)model, and its incongruent

end states worsen quickly with scale and concurrency (see

Fig. 1). We introduce three new visibility models.

1. Global Strict Visibility (GSV): In this strong visibility

model, the smart home executes at most one routine at any time.
In our SafeHome-Visibility definition (Sec. 3), the effect for
GSV is “at every point of time”, i.e., every individual action on

every device. Consider a homewhere two routines are started

simultaneously:𝑅𝑑𝑖𝑠ℎ𝑤𝑎𝑠ℎ ={dishwasher:ON; /*run dish-
washer for 40 mins*/ dishwasher:OFF;}, and 𝑅𝑑𝑟𝑦𝑒𝑟=
{dryer:ON; /*run dryer for 20 mins*/ dryer:OFF;}.
If the home has low amperage, switching on both dishwasher

and dryer simultaneously may cause an outage (even though

these 2 routines touch disjoint devices). If the home chooses

GSV, then the execution of𝑅𝑑𝑖𝑠ℎ𝑤𝑎𝑠ℎ and𝑅𝑑𝑟𝑦𝑒𝑟 are serialized,

allowing at most one to execute at any point of time. Because

routines need to wait until the smart home is “free”, GSV

results in very long latencies to start routines. In GSV, a

long-running routine also starves other routines.

2. Partitioned Strict Visibility (PSV): PSV is a weakened

version of GSV that allows concurrent execution of non-

conflicting routines, but limits conflicting routines to execute

serially. For our previous (GSV) example of 𝑅𝑑𝑖𝑠ℎ𝑤𝑎𝑠ℎ and

𝑅𝑑𝑟𝑦𝑒𝑟 started simultaneously, if the home has no amperage

restrictions, the users should choose PSV. This allows con-

current execution, and the end state is equivalent to serial

execution, i.e., dishes are washed, clothes dried. However, if
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Figure 2. Example Routine Execution in different Visibility
Models (GSV, PSV, EV): 𝑅𝑖𝐶 𝑗 represents the 𝑗𝑡ℎ command of the
𝑖𝑡ℎ routine. In EV, red boxes show a pair of incongruent commands
and the blue box shows the total number of temporary incongruences.

the two routines happened to touch conflicting devices, PSV

would have executed them serially.

3. Eventual Visibility (EV): This is our most relaxed vis-

ibility model that allows routines’ commands to be inter-

leaved and yet guarantees serial-equivalence. EV specifies

that only when all the routines have finished (completed or
aborted), the end state of the smart home is identical to that

obtained if all routines were to have been serially executed in
some sequential (total) order. In the definition of SafeHome-

Visibility, the effect for EV is the end-state of the smart home

after all the routines are finished.

EV is intended for the relatively-common scenarios where

the desired final outcome (of routines) is more important to

the users than the ephemerally-visible intermediate states.

Unlike GSV, the EV model allows conflicting routines (touch-

ing conflicting devices) to execute concurrently–and thus

reduces the latencies of both starting and running routines.

Consider two users in a home simultaneously initiating

identical instances of a routine ={coffee:ON; /*make coffee
for 4 mins*/; coffee:OFF; pancake:ON; /*make pan-
cakes for 5 mins*/; pancake:OFF;}. This scenariomight

occur if the two users do not coordinate a priori, or if one

of the routines is auto-triggered. Both GSV and PSV execute

these routines serially, because of the conflicting devices. EV

would be able to pipeline them, overlapping the pancake

command of one routine with the coffee command of the

other routine. EV assures that at the end both users have

their respective coffees and pancakes.

Example for All Visibility Models: Fig. 2 shows an ex-

ample of 5 concurrent routines, 𝑅1 − 𝑅5, that we executed in

a real SafeHome deployment (run on Raspberry Pi, with 5

devices as TP-Link HS-105 smart-plugs [75]).

𝑅1: makeCoffee(Espresso); makePancake(Vanilla);
𝑅2: makeCoffee(Americano); makePancake(Strawberry);
𝑅3: makePancake(Regular);
𝑅4: startRoomba(Living room); startMopping(Living room);
𝑅5: startMopping(Kitchen);

GSV shows the longest execution time of 8 time units as

it serializes execution. PSV reduces execution time to 5 time

units by parallelizing unrelated commands, e.g., 𝑅1𝐶1 and

𝑅4𝐶1 at 𝑡 = 0. EV is the fastest, finishing all routines by 3

GSV PSV EV WV
Concurrency At most one

routine

Non-conflicting rou-

tines concurrent

Any serializ-

able routines

concurrent

Any routines

concurrent

End State Serializable Serializable Serializable Arbitrary

Wait Time:
time to start
routine

High High for conflicting

routines, low for

non-conflicting ones

Low for all rou-

tines (modulo

conflicts)

Low for all

routines

User
Visibility

Congruent

at all times

Congruent at end

& at start/complete

points of routines

Congruent at

end

May be in-

congruent

at anytime

and/or end

(Fig. 1)

Table 1. Spectrum of Visibility Models in SafeHome.

time units. Average latencies (wait to start, wait to finish)

are also fastest in EV, then PSV, then GSV. The figure shows

that EV exhibits “temporary incongruence”–routines whose

intermediate state is not serially equivalent. EV guarantees

zero incongruence when the last routine finishes.

In summary, temporary incongruence refers to interme-

diate states that would never be reached via a purely serial

execution. A majority of these are not “bad” states, with the

user barely noticing a difference—for instance, in Fig. 2, the

coffeemaker and pancake-maker running simultaneously

(in EV, and PSV). Since different users’ experiences may be

subjectively different, hence our temporary incongruence

metric is an objective “worst case” measure of the badness

of non-serial intermediate states.

Table 1 contrasts the properties of the four visibility mod-

els. Table 2 summarizes the examples discussed so far.

3.2 SafeHome-Atomicity
SafeHome-Atomicity states that for a routine, either: (a) all

its commands have the desired effect on the home (i.e., the

routine completes), or (b) the routine aborts, rolls back its com-

mands, and gives feedback to the user. Due to the physical

effects of smart home routines, we discuss three deviations

from traditional notions of atomicity.

First, we allow the user to tag some commands as best-
effort, i.e., optional. A routine is allowed to complete success-

fully even if any best-effort commands fail. Other commands,

tagged as must, are required for routine completion—if any

must command fails, the routine must abort. This tagging

acknowledges the fact that users may not consider all com-

mands in a routine to be equally important. For instance,

a “leave-home-for-work” routine may contain commands

which lock the door (must ) and turn off lights (best-effort)—

even if the lights are unresponsive, the doors must still lock.

The user receives feedback about the failed best-effort com-

mands, and she is free to either ignore or re-execute them.

Second, aborting a routine requires undoing past-executed

commands. Many commands can be rolled back cleanly, e.g.,

command turn Light-3 ON can be undone by SafeHome

issuing a command that sets Light-3 to OFF. Some long com-

mands cannot be physically reversed, e.g., command run
north sprinklers for 15 mins, or command blare a
test alarm. For such commands, we undo by restoring the

device to its state before the aborted routine (e.g., set the
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Example Routines Scenario and Possible Behavior SafeHome Feature
“cooling”={window:CLOSE; AC:ON;} If executed partially, can leave window open and AC on (wasting energy) or

the window closed and AC off (overheating home).

Atomicity

“make coffee”={coffee:ON; /*make coffee for 4 mins*/;
coffee:OFF;}

Coffeemaker should not be interrupted by another routine. E.g, user-1 invokes

make coffee, and in the middle, user-2 independently invokes make coffee.

Long running routines &

mutually exclusive access

𝑅1={dishwasher:ON; /*run dishwasher for 40 mins*/;
dishwasher:OFF;}
𝑅2={dryer:ON; /*run dryer for 20 mins*/; dryer:OFF;}

If home has low amperage, simultaneously running two power-hungry devices

may cause outage (GSV).

Global Strict Visibility

(GSV)

𝑅1={coffee:ON; /*make coffee for 4 mins*/; coffee:OFF;}
𝑅2={lights:ON, fan:ON}

Two routines touching disjoint devices should not block each other (PSV). Partitioned Strict Visibility

(PSV), closest to [64]

“breakfast”={coffee:ON; /*make coffee for 4 mins*/; coffee:OFF,
pancake:ON; /*make pancakes for 5 mins*/; pancake:OFF; }

Two users can invoke this same routine simultaneously. The two routines can

be pipelined thus allowing some concurrency without affecting correctness

(EV). (Both GSV and PSV would have serialized them.)

Eventual Visibility (EV)

“leave home”={lights:OFF (Best-Effort); door:LOCK;} Requiring all commands to finish too stringent, so only 2nd command is Must

(required). If light unresponsive, door must lock, otherwise routine aborts.

Must and Best-Effort com-

mands

“manufacturing pipeline” with k stages and {𝑅1, 𝑅2, ..., 𝑅𝑘}
routines

If any stage fails, entire pipeline must stop immediately. Strong GSV serial-

ization (S-GSV)

F
a
i
l
u
r
e
S
e
r
i
a
l
i
z
a
t
i
o
n

“cooling”={window:CLOSE; AC:ON;} If anytime during the routine (from start to finish), the AC fails or window

fails, the routine is aborted.

Loose GSV serial-

ization (GSV)

“cooling”={window:CLOSE; AC:ON;} If window fails after its command and remains failed at finish point of routine,

routine is aborted.

PSV serialization

“cooling”={window:CLOSE; AC:ON;} If window fails after it is closed (but before AC is accessed), routine completes

successfully–window failure can be serialized after routine.

EV serialization

Table 2. Example Scenarios in a smart home, and SafeHome’s corresponding features.

sprinkler/alarm state to OFF). Alternately, a user-specified
undo-handler could be used.

A goal of SafeHome’s atomicity and visibility is to en-

sure that aborts are caused only by failures, in all visibility

models. In other words—without failures of commands or

devices, routines always complete, even if they were to con-

flict. Finally, we note that when a routine aborts, SafeHome

provides feedback to the user (including logs), and she is free

to either re-initiate the routine or ignore the failed routine.

3.3 Safety Properties
Orthogonal to the atomicity and visibility properties is the

notion of Safety [2]. While our current paper is not focused

on safety, we briefly overview it for completeness.

SafeHome allows users to specify safety properties in the

form of declarative predicates, which capture unanticipated

states violating user intents. Once specified, SafeHome then

assures that such unsafe states are never reached at any

time, regardless of the visibility model. Safety properties are

useful in avoiding scenarios which can create serializable,

but unwanted, outcomes.

We envision that some safety predicates will come “baked”

into the smart home, while others can be programmed and

changed by the user. Safety properties could be specified

in a myriad number of ways, e.g., [2, 48, 86]. Safety prop-

erties are useful in catching safety violations due to either:

(a) badly programmed routines (GSV, PSV, EV), or (b) con-

current routines (PSV, EV). Examples of (a) and (b) follow.

Example for (a): given the safety property “if (stove==ON)
then (exhaust-fan==ON)”, then a routine R1={stove:ON;
exhaust-fan:ON} will be rejected by SafeHome, but the al-

ternate routine R1
′={exhaust-fan:ON; stove:ON} will be

admitted. Example for (b): consider two routines : R1 ={. . .
stove:ON; . . . stove:OFF; . . .} and R2 ={. . . exhaust-fan:
OFF; . . .}. If R2’s exhaust-fan command were to execute in

between R1’s two stove commands, SafeHome catches a

safety violation and prevents it from happening. Other inter-

leavings that do not violate the safety property are allowed.

When SafeHome catches a potential safety violation, the

offending command is not executed, and the routine con-

taining it is aborted and rolled back. Safety properties are

also checked any time the failure detector catches a device

failure–in such cases, a report is bubbled up to the user as

human intervention may be required, e.g., the CO detection

device fails or fire alarm is low on battery.

In the rest of the paper we focus purely on atomicity and

visibility/isolation, rather than the orthogonal safety require-

ments which literature has already explored [2, 64, 86]. We

note that the presence of long-term safety properties does

not obviate the need for (and challenges associated with) the

properties of atomicity and visibility, which are relatively

short-term and scoped to routines. Additionally, guarantee-

ing atomicity for a routine provides correct behavior when

the routine’s commands are not connected by safety condi-

tions. Of course, while one could ostensibly carefully craft

safety conditions scoped only to the run time of an individual

routine, in order to achieve an atomicity-like behavior, this

alternative would result in a large number of safety condi-

tions, whose number would grow quickly with the number

of routines. Keeping track of consistency across numerous

safety conditions would be cumbersome for users. We en-

vision a world where there are only a handful of long-term

routine-independent safety properties in the home, and the

rest of the correctness relies orthogonally on atomicity and

visibility/isolation.

4 Failure Handling and Visibility Models
Smart home devices could fail or become unresponsive, and

then later restart. SafeHome needs to reason cleanly about

failures or restarts that occur during the execution of con-

current routines. Our failure model is fail-stop/fail-recovery

(Byzantine failures are beyond our scope).
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Because device failure events and restart events are visible

to human users, our visibility models need to be amended.

Consider a device𝐷 which routine 𝑅 touches via one or more

commands. 𝐷 might fail during a command from 𝑅, or after
its last command from 𝑅, or before its first command from 𝑅,

or in between two commands from 𝑅. A naive approach may

be to abort routine 𝑅 in all these cases. However, for some

relaxed visibility models like Eventual Visibility, if the failure

event occurred anytime after completing the device’s last

command from 𝑅, then the event could be serialized to occur

after the routine 𝑅 in the serially-equivalent order (likewise

for a failure/restart before the first command to that device

from 𝑅, which can be serialized to occur before 𝑅).

Thus a key realization in SafeHome is that we need to

serialize failure events and restart events alongside routines
themselves. We can now restate the SafeHome-Visibility prop-

erty from Sec. 3, to account for failures and restarts:

SafeHome-Visibility/Serializability (with Failures and
Restarts): The effect of the concurrent execution of a set

of routines, occurring along with concurrent device failure

events and device restart events, is identical to an equivalent

world where the same routines, device failure events, and

device restart events, all occur sequentially, in some order
1

First, we define the failure/restart event to be the event

when the edge device (running SafeHome) detects the fail-
ure/restart (this may differ from the actual time of failure or

restart). Second, failure events and restart eventsmust appear
in the final serialized order. On the contrary, routines may
appear in the final serialized order (if they complete success-

fully). We next reason explicitly about failure serialization

for each of our visibility models from Sec. 3.1.

1. Failure Serialization inWeakVisibility:Today’sWeak

Visibility has no failure serialization. Routines affected by

failures/restarts complete and cause incongruent end-states.

2. Failure Serialization in Global Strict Visibility: GSV
presents the picture of a single serialized home to the user,

thus, if any device failure event or restart event were to occur
while a routine is executing (between its start and finish), the

routine must be aborted. There are two sub-flavors: (A) Loose
GSV (GSV): A routine aborts only if it contains at least one

command that touches a failed/restarted device; (B) Strong
GSV (S-GSV): A routine aborts even if it does not have a

command that touches a failed/restarted device. A routine

𝑅𝑠ℎ𝑎𝑑𝑒 on living room shades can complete, if master bath-

room shades fail, in GSV but not in S-GSV. In S-GSV, the

final serialization order contains the failure/restart event but

not the aborted routine 𝑅𝑠ℎ𝑎𝑑𝑒 . In GSV, the final serializa-

tion order contains both 𝑅𝑠ℎ𝑎𝑑𝑒 (which completes) and the

failure/restart event, in an arbitrary order.

1
This idea has analogues to distributed systems abstractions such as

view/virtual synchrony, wherein failures and multicasts are totally or-

dered [16]. We do not execute multicasts in the smart home.

Figure 3. Failure Serialization: 6 cases, and their handling
in Visibility Models. ✓-execute routine, X -abort routine. At F[A]
/Re[A] the edge device detects the failure/restart (resp.) of device A.

3. Failure Serialization inEventualVisibility: For a given
set of routines (and concurrent failure events and restart

events), the eventual state of the actual execution is equiv-

alent to the end state of a world wherein the successful

routines, failure events, and restart events, all occurred in

some serial order. Consider routine 𝑅, and the failure event

(and potential restart event) of one device𝐷 . Four cases arise:

1. If 𝐷 is not touched by 𝑅, then 𝐷’s failure event and/or

restart event can be arbitrarily ordered w.r.t. 𝑅.

2. If𝐷’s failure and restart events both occur before 𝑅 first
touches the device, then the failure and restart events

are serialized before 𝑅.
3. If 𝐷’s failure event occurs after the last touch of 𝐷 by

𝑅, then 𝐷’s failure event (and eventual restart event)

are serialized after 𝑅.
4. In all other cases, routine 𝑅 aborts due to 𝐷’s failure.

𝑅 does not appear in the final serialized order.

4. Failure Serialization in Partitioned Strict Visibility:
This is a modified version of EV where we change condition

3 (from 1-4 in EV above) to the following:

3*. If 𝐷’s failure event occurs after the last touch of 𝐷 by 𝑅,
and has recovered when 𝑅 reaches its finish point, then 𝐷’s

failure event and restart event are serialized right after 𝑅.
Example—Effect of Failure on Three VisibilityModels:
Consider the routine from Section 2,𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔={window:CLOSE;
AC:ON;}. If the “window” device fails during 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔 execu-
tion, then GSV always aborts 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔, regardless of when

the window failed. PSV aborts 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔 only if the window

remains failed at 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔’s finish point. EV does not need to

abort 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔 if window fails any time after 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔’s first

command completes successfully, even if window remains

failed at 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔’s finish time. EV places the window fail-

ure event after 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔 in the serialization order, making the

smart home’s end state equivalent. If the window fails and

restarts before 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔’s first command, EV serializes the fail-

ure and restart before 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔 , and executes 𝑅𝑐𝑜𝑜𝑙𝑖𝑛𝑔 correctly.

Thus, EV has the least chance of aborting a routine.

Table 2 summarizes all our examples so far and Fig. 3

summarizes our failure handling rules.
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5 Eventual Visibility: SafeHome Design
In order to maintain correctness for Eventual Visibility (i.e.,

serial-equivalence), SafeHome requires routines to lock de-

vices before accessing them. Because long routines can hold

locks and block short routines, we introduce lock leasing
across routines (Sec. 5.1). This information is stored in the

Locking Data-structure (Sec. 5.2). The lineage table ensures
invariants required to guarantee Eventual Visibility (Sec. 5.3).

5.1 Locks and Leasing
SafeHome prefers Pessimistic Concurrency Control
(PCC): SafeHome adopts pessimistic concurrency control

among routines, via (virtual) locking of devices. Abort and

undo of routines are disruptive to the human experience,

causing (at routine commit point) rollbacks of device states

across the smart home. Our goal is to minimize abort/undo

only to situations with device failures, and avoid any aborts

arising from routines touching conflicting devices. Hence

we eschew optimistic concurrency control approaches and

use locking
2
.

SafeHome uses virtual locking wherein each device has

a virtual lock (maintained at the edge device running Safe-

Home), which must be acquired by a routine before it can

execute any command on that device. A routine’s lock ac-

quisition and release do not require device access, and are

not blocked by device failure/restart.

In order to prevent a routine from aborting midway be-

cause it is unable to acquire a lock, SafeHome uses early lock
acquisition—a routine acquires, at its start point, the locks of
all the devices it wishes to touch. If any of these acquisitions

fails, the routine releases all its locks immediately and retries

lock acquisition. Otherwise, acquired locks are released (by

default) only when the routine finishes.

Leasing of Locks: To minimize chances of a routine being

unable to start because of locks held by other routines, Safe-

Home allows routines to lease locks to each other. Two cases

arise: 1) routine 𝑅1 holds the lock of device𝐷 for an extended

period before 𝑅1’s first access of 𝐷 , and 2) 𝑅1 holds the lock

of device 𝐷 for an extended period after 𝑅1’s last access of
𝐷 . Both cases prevent a concurrent routine 𝑅2, which also

wishes to access 𝐷 , from starting.

SafeHome allows a routine 𝑅𝑠𝑟𝑐 (= 𝑅1) holding a lock (on

device 𝐷) to lease the lock to another routine 𝑅𝑑𝑠𝑡 (= 𝑅2).
When 𝑅𝑑𝑠𝑡 is done with its last command on 𝐷 , the lock is

returned back to 𝑅𝑠𝑟𝑐 , which can then normally use it and

release it. We support two types of lock leasing:

• Pre-Lease: 𝑅𝑠𝑟𝑐 has started but has not yet accessed𝐷 . A

lease at this point to 𝑅𝑑𝑠𝑡 is called a pre-lease, and places

𝑅𝑑𝑠𝑡 ahead of 𝑅𝑠𝑟𝑐 in the serialization order. After 𝑅𝑑𝑠𝑡 ’s

last access of 𝐷 , it returns the lock to 𝑅𝑠𝑟𝑐 . If 𝑅𝑠𝑟𝑐 reaches

its first access of 𝐷 before the lock is returned to it, 𝑅𝑠𝑟𝑐
waits. After the lease ends, 𝑅𝑠𝑟𝑐 can use the lock normally.

2
For the limited scenarios where routines are known to be conflict-free,

optimistic approaches may be worth exploring in future work.

Figure 4. SafeHome’s Locking Table for Eventual Visibility.

• Post-Lease: 𝑅𝑠𝑟𝑐 is done accessing device 𝐷 , but the rou-

tine itself has not finished yet. A lease at this point to

𝑅𝑑𝑠𝑡 is called a post-lease, and places 𝑅𝑑𝑠𝑡 after 𝑅𝑠𝑟𝑐 in the

serialization order. If 𝑅𝑠𝑟𝑐 finishes before 𝑅𝑑𝑠𝑡 , the lock

ownership is permanently transferred to 𝑅𝑑𝑠𝑡 . Otherwise,

𝑅𝑑𝑠𝑡 returns the lock when it finishes.

A prospective pre/post-lease is disallowed if a previous

action (e.g., another lease) has already determined a serializa-

tion order between 𝑅𝑠𝑟𝑐 and 𝑅𝑑𝑠𝑡 that would be contradicted

by this prospective lease. In such cases 𝑅𝑑𝑠𝑡 needs to wait

until 𝑅𝑠𝑟𝑐 ’s normal lock release. Further, a post-lease is not al-

lowed if at least one device𝐷 is written by 𝑅𝑠𝑟𝑐 and then read

by 𝑅𝑑𝑠𝑡 . This prevents SafeHome from suffering dirty reads

from aborted routines, and thus prevents cascading aborts

from scenarios like the following–𝑅𝑠𝑟𝑐 switches on a light,

and 𝑅𝑑𝑠𝑡 has a conditional clause based on that light’s status,

but 𝑅𝑠𝑟𝑐 subsequently aborts. (If we were to allow cascading

aborts, existing techniques [64] could be used orthogonally).

To prevent starvation, i.e., from 𝑅𝑠𝑟𝑐 waiting indefinitely

for the returned lock, leased locks are revoked after a timeout.

The timeout is calculated based on the estimated time be-

tween 𝑅𝑑𝑠𝑡 ’s first and last actions on𝐷 (a small multiplicative

factor slightly > 1 could be used for leniency).

5.2 Locking Datastructure
SafeHome adopts a state machine approach [63] to track

current device states, future planned actions by routines, and

a serialization order. SafeHome maintains, at the edge device

(e.g., Home Hub or smart access point), a virtual locking table
data-structure, depicted in Fig. 4. This consists of:

• Wait Queue: Routines initiated but not started. Routines

are assigned a new routine ID at add time.

• Serialization Order: Maintains the current serialization

order of routines, failure events, and restart events. For

completed routines (shaded green), the order is finalized.

All other orders are tentative and may change, e.g., based

on lock leases. Failure and restart events may be moved

flexibly among unfinished routines.

• Lineage Table:Maintains a per-device lineage: the planned
transition order of that device’s lock (Section 5.3).

• Scheduler: Decides when routines from Wait Queue are

started, acquires locks, and maintains serialization order.
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Figure 5. Sample Lineage Table, with 6 routines. Some
fields are omitted for simplicity.

• Committed States: For each device, keeps its last commit-

ted state, i.e., the effect of the last successful routine. This

may be different from device’s actual state, and is needed

to ensure serialization and rollbacks under aborts.

5.3 Lineage Table
The lineage of a device represents a temporal plan of when

the device will be acquired by concerned routines. The lin-

eage of a device starts with its latest committed state, fol-

lowed by a sequence of lock-access entries (Fig. 5)–these are
“stretched” horizontally. Width of a lock-access entry repre-

sents how long that routine will hold the lock. A lock-access

entry for device 𝐷 consists of: i. A routine ID, ii. Lock status
(Released, Acquired, Scheduled) iii.Desired device state
by the command (e.g., ON/OFF) and iv. Times: a start time

(𝑇𝑠𝑡𝑎𝑟𝑡 (𝑅𝑖 )), and duration (𝜏𝑅𝑖 (𝐷)) of the lock-access.
In the example of Fig. 5, a Scheduled [S] status indicates

that the routine is scheduled to access the lock. An Acquired
[A] status shows it is holding and using the lock. A Released
[R] status means the routine has released the lock.

The duration field, 𝜏𝑅𝑖 (𝐷), is set based on either known

time to run a long command (e.g., run sprinkler for 15 mins),

or an estimate of command execution time. Our implemen-

tation uses a fixed 𝜏𝑅𝑖 (𝐷) for all short commands. 𝜏𝑅𝑖 (𝐷)
is also used to determine the revocation timeout for leased

locks (a small multiplicative factor slightly > 1 could be used

for leniency). At runtime, if a command’s upper bound is vi-

olated, this is treated as a failure, and the routine is forced to

abort and release its lock(s). We found the 95
𝑡ℎ

percentile la-

tency for TP-Link Kasa switches [74] was 30 ms, thus 𝜏𝑅𝑖 (𝐷)
could be set as low as 100 ms.

To maintain serializability, we assure four key invariants:

Invariant 1 (Future Mutual Exclusion: Lock-accesses
in a device’s lineage list do not overlap in time). No
device is planned to be locked by multiple routines. Gaps in its
lineage list indicate times the device is free.

Invariant 2 (Present Mutual Exclusion: At most one
Acquired lock-access exists in each lineage list). No de-
vice is locked currently by multiple routines.

Invariant 3 (Lock-access [R]−→[A]−→[S]). In each lin-
eage list, all Released lock-access entries occur to the left of

Figure 6. Lineage Table with Lock Leasing. a) Lineage before
leasing with only 𝑅𝑠𝑟𝑐 , b) Pre-lease to 𝑅𝑑𝑠𝑡 that only accesses device
B, and c) Post-lease to 𝑅𝑑𝑠𝑡 that only accesses device A.

(i.e., before) any Acquired entries, which in turn appear to the
left of any Scheduled entries.

Invariant 4 (Consistent “serialize-before” ordering
among lineages). Given two routines 𝑅𝑖 , 𝑅 𝑗 , if there is at
least one device 𝐷 such that: lock-access𝐷 (𝑅𝑖 ) occurs to the left
of lock-access𝐷 (𝑅 𝑗 ) in 𝐷’s lineage list, then for every other de-
vice 𝐷 ′ touched by both 𝑅𝑖 , 𝑅 𝑗 , it is true that: lock-access𝐷′ (𝑅𝑖 )
occurs to the left of lock-access𝐷′ (𝑅 𝑗 ). Thus 𝑅𝑖 is serialized-
before 𝑅 𝑗 .

Transition of Lock-accesses: The status of lock-accesses
changes upon certain events. First, when a routine’s last

access to a device ends, the Acquired lock-access ends, and

transitions to Released. The next Scheduled lock-access

turns to Acquired: i) either immediately (if no gap exists,

e.g., 𝑅4 after 𝑅5 releases 𝐶 in Fig. 5), or ii) after the gap has

passed, e.g., 𝑅4 after 𝑅1 releases 𝐷 in Fig. 5.

Second, when scheduling a new routine 𝑅 (from the wait

queue), a Scheduled lock-access entry is added to all device

lineages that 𝑅 needs (e.g., 𝑅6 in Fig. 5 adds lock-accesses for

B and C). Third, when a routine finishes (completes/aborts),

all its lock-access entries are removed, releasing said locks.

If the routine completed successfully, committed states are

updated. For an abort, device states are rolled back.

Leasing of Locks: Suppose 𝑅𝑠𝑟𝑐 pre-leases to 𝑅𝑑𝑠𝑡 (Fig. 6(b)).
First, a new Acquired lock-access for 𝑅𝑑𝑠𝑡 is placed before
(to the left of) lock-access of 𝑅𝑠𝑟𝑐 in the lineage table. Second,

the 𝑅𝑠𝑟𝑐 ’s lock-access is changed to “Leased (𝑅𝑑𝑠𝑡 )”.

Fig. 6(c) shows a post-lease: a new Acquired lock-access
of 𝑅𝑑𝑠𝑡 is placed after (to the right of) the lock-access of 𝑅𝑠𝑟𝑐
and the lock-access of 𝑅𝑠𝑟𝑐 changes to Released.
Aborts and Rollbacks: For an aborted routine 𝑅𝑖 , we roll

back states of only those devices 𝐷 in whose lineage 𝑅𝑖 ap-

peared. For a device 𝐷 , there are two cases:

• Device 𝐷 was last Acquired by routine 𝑅 𝑗 (≠ 𝑅𝑖 ): We

remove 𝑅𝑖 ’s lock-access from 𝐷’s lineage. This captures

two possibilities: a) 𝑅𝑖 never executed actions on 𝐷 (e.g.,

Fig. 5: device C when aborting 𝑅4), or b) 𝑅𝑖 leased 𝐷 to

another routine 𝑅 𝑗 , and since 𝑅𝑖 is aborting, 𝑅 𝑗 ’s effect

will be the latest (e.g., Fig. 5: device A when aborting 𝑅1).
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(a) Before 𝑅1, 𝑅2, 𝑅3 commit (b) After 𝑅2, 𝑅3 commit (not 𝑅1)

Figure 7. Commit with Compaction.

Figure 8. Inferring the current device status. The dashed boxes
point to the current device status in three different scenarios.

• Device 𝐷 was last Acquired by routine 𝑅𝑖 (e.g. device C
when aborting 𝑅5 in Fig. 5): We: 1) remove the 𝑅𝑖 ’s lock-

access from 𝐷’s lineage, and 2) issue a command to set

𝐷’s status to 𝑅𝑖 ’s immediately left/previous lock-access
entry in the lineage (if none exist, use Committed State),

unless the device is already in this desired state.

Committing (SuccessfullyCompleting) a routine:When

a routine reaches its finish point, it commits (completes suc-

cessfully) by: i) updating Committed States, and ii) removing

its lock-access entries. 𝑅 𝑗 might appear after 𝑅𝑖 in the serial-

ization order but complete earlier, e.g., due to lock leasing.

SafeHome allows such routines to commit right away by

using commit compaction–routines later in the serialization

order will overwrite effects of earlier routines (on conflict-

ing devices). This is similar to “last writer wins” in NoSQL

DBs [80]. Concretely, for all common devices we remove

both 𝑅𝑖 ’s lock-access, and all lock-accesses before it (Fig. 7).

Current Device Status: A device’s current status is needed

at several points, e.g., abort. Due to uncompleted routines,

the actual status may differ from the committed state. The

lineage table suffices to estimate a device’s current state

(without querying the device). Fig. 8 shows the three cases:

(a) If an Acquired lock-access entry exists, use it (e.g., 𝑅3 in

Fig. 8(a) with 𝐷 = 25). (b) Otherwise, if lock-accesses exist

with lock status Released, use the right-most entry (e.g., 𝑅2
in Fig. 8(b) with 𝐷 = 15). (c) Otherwise, use the Committed

State entry (e.g., committed state 𝐷 = 10 in Fig. 8(c)).

AvoidingDeadlocks andLivelocks: First, SafeHome avoids

deadlocks because it maintains a (planned) linear serializa-

tion order among routines. To reiterate—when routine R

first conflicts with routine R’ on any given device, SafeHome

decides the serialization order between R and R’. Any subse-

quent R-R’ conflicts at any device D’ will obey this serializa-

tion order.

Second, SafeHome avoids livelocks via the lineage table

and serialization order, which together “plan” when rou-

tines will lock devices and execute commands. This prevents

starvation and livelocks.

(a) (b) (c)
Figure 9. Timeline Scheduler (TL) Example: a) Before sched-
uling 𝑅3 b) Trying a potential (but invalid) schedule, c) Scheduling
𝑅3 at the first possible gap.

6 Eventual Visibility: Scheduling Policies
When a new routine arrives, SafeHome needs to “place” it

in the serialization order, adhering to invariants of Sec. 5.3.

This is a scheduling problem. We present three solutions.

First Come First Serve (FCFS) Scheduling: Routines are
serialized in order of arrival. When a routine arrives, its

lock-access entries are appended to the lineage table. FCFS

avoids pre-leases as they would violate serialization order.

Post-leases are allowed.

FCFS is attractive if a user expects routines to execute in

the order they were initiated. However, FCFS prolongs time

between routine submission and start.

Just-in-Time (JiT) scheduling: JiT greedily places a new

routine at the earliest position (in the lineage) when it is eligi-
ble to start. JiT triggers an eligibility test upon either: (i) each

routine arrival, or (ii) on every lock release. The eligibility

test greedily checks for routine 𝑅 if it can now acquire all its

locks, either right away, or via pre-leases or post-leases. For

case (ii), we run the eligibility test only on those waiting rou-

tines that desire the released device. To mitigate starvation,

we use a per-routine TTL (Time To Live)—when a waiting

routine 𝑅’s TTL expires, 𝑅 is prioritized to start next (ties

broken by arrival order).

Timeline(TL) Scheduling: This flexible policy uses esti-

mates of lock-access durations, and speculatively places wait-
ing routines into the lineage table based on these estimates.

This means no routines need to wait for an eligibility test

(unlike JiT) before being added to the lineage table. TL sched-

uling tries to place routines in the gaps in the lineage table

without violating the lineage table invariants (Sec. 5.3). An

example is shown in Fig. 9a, 9b. Fig. 9c shows that TL may

“stretch” a routine’s execution time due to lock waits dur-

ing execution. To mitigate this, a new routine is delayed

from starting (now) if this were to cause TL to stretch some

running routine beyond a pre-specified threshold.

TL scheduling uses a backtrack-based search strategy to

find the best placement for a new routine in the lineage table.

Algo. 1 shows the pseudocode. We explain via an example.

Fig. 9a depicts a lock table right before routine𝑅3 = {𝐶 → 𝐵}
arrives at time𝑇𝑅3, and has four gaps in the lineage. Starting

with the first device in the routine (𝐶 for 𝑅3): 𝜏𝑅3
(𝐶) (Line 3),

the Timeline scheduler finds the first gap in 𝐶’s lineage that
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Algorithm 1 Timeline Scheduling of Routine 𝑅

1: function Schedule(𝑅, index, startTime, preSet, postSet)

2: devID = 𝑅 [𝑖𝑛𝑑𝑒𝑥] .𝑑𝑒𝑣𝐼𝐷
3: duration = 𝑙𝑜𝑐𝑘_𝑎𝑐𝑐𝑒𝑠𝑠 (𝑅,𝑑𝑒𝑣𝐼𝐷) .𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
4: //return from recursion

5: if 𝑅.𝑐𝑚𝑑𝐶𝑜𝑢𝑛𝑡 < index then
6: return true

7: end if
8: //Find gap and pre- and post-set

9: gap = getGap(devID , startTime, duration)

10: curPreSet = preSet ∪ getPreSet(lineage[devID], gap.id)

11: curPostSet = postSet ∪ getPostSet(lineage[devID], gap.id)

12: if curPreSet ∩ curPostSet = ∅ then
13: //Serialization is not violated

14: canSchedule = schedule(𝑅, index + 1, gap.startTime +

duration , curPreSet, curPostSet)

15: if canSchedule then
16: lineage[devID].insert(𝑅 [𝑖𝑛𝑑𝑒𝑥], gap)
17: return true

18: end if
19: end if
20: //backtrack: try next gap

21: return schedule(𝑅, index, gap.startTime + duration , preSet,

postSet)

22: end function

can fit 𝜏𝑅3
(𝐶) (Line 9). This is Gap 1 in Fig. 9a. Next, the Time-

line scheduler validates that this gap choice will not violate

the finalized serialization. For the scheduled lock-accesses

of 𝑅3, it builds two sets: a) preSet: union of all (executing and

scheduled) routines placed before 𝑅3’s lock-accesses ({𝑅1} in
Fig. 9b), and b) postSet: union of all (executing and scheduled)
routines placed after 𝑅3’s lock-accesses ({𝑅1, 𝑅2} in Fig. 9b).

preSet and postSet of 𝑅 are the routines positioned before

and after 𝑅, respectively, in the serialization order. The gap

choice is valid if and only if the intersection of preSet and

postSet is empty. If true the scheduler moves to the routine’s

next command. Otherwise (Fig. 9b), the scheduler backtracks

and tries the next gap (Line 21). This process repeats.

7 SafeHome Implementation
We implemented SafeHome in 2000 core lines of Java. Safe-

Home runs on an edge device, such as a Home Hub or an en-

hanced/smart access point. Our edge-first approach has two

major advantages: 1) SafeHome can be run in a smart home

containing devices from a diverse set of vendors, and 2) Safe-

Home is autonomous, without being affected by ISP/external

network outages [21, 84] or cloud outages [3, 31, 32].

SafeHome works directly with the APIs exported by de-

vices – commands in routines are programmed as API calls

directly to devices. SafeHome’s routine specification is com-

patible with other smart home systems (Fig. 10). Our current

implementation works for TP-Link smart devices [77, 78],

using the HS110Git [73] device-driver. Other devices (e.g.,

Wemo [81]) can be supported via their device-drivers.

(a) JSON Representation of SafeHome Routine (part)

(b) G. Home Routine [30] (c) TP-Link Routine [76]

Figure 10. Defining a Routine “Prepare Breakfast”. Two com-
mands: i)Turn ON Coffee Maker and ii) Turn ON Toaster.

Figure 11. SafeHome Architecture.

Fig. 11 shows our implementation architecture. When a

user submits routines, they are stored in the Routine Bank,
fromwhere they can be invoked either by the user or triggers,

via the Routine Dispatcher. The Concurrency Controller runs
the appropriate Visibility model’s implementation. Apart

from Eventual Visibility (Sec. 6), we also implemented Global

Strict Visibility (GSV), and Partitioned Strict Visibility (PSV),

with failure/restart serialization. Our Weak Visibility reflects

today’s laissez-faire implementation.

The Failure Detector explicitly checks devices by period-

ically (1 sec) sending ping messages. If a device does not

respond within a short timeout, the failure detector marks

it as failed. We also leverage implicit failure detection by

using the last heard SafeHome TCP message as an implicit

ack from the device, reducing the rate of pings.

8 Experimental Results
We evaluate SafeHome using both workloads based on real-

world deployments, and microbenchmarks. The major ques-

tions we address include:

1. Are relaxed visibility models (Eventual Visibility) as

responsive as Weak Visibility, and as correct as Global

Strict Visibility (Sec. 3.1)?

2. What effect do failures have on correctness and user

experience (Sec. 4)?

3. Which scheduler policy (Sec. 6) is the best?

4. What is the effect of lock leasing (Sec. 5)?

8.1 Experimental Setup
We wish to evaluate SafeHome for a variety of scenarios

and parameters. Hence we run our implementation over an
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(a) Real-World Workloads: Latency, Temporary Incongruence, and Parallelism for One De-
ployment Scenario (Morning) and Three Simulated Scenarios (Morning, Party, Factory).

(b) Final Incongruence.
Run with 9 routines, 100 runs
per scenario, and checks if
final smart home state is
equivalent to some serial
ordering of routines (9!
possibilities). Final Incon-
gruence measures the ratio
of end states that were not
congruence out of 100 runs.

Figure 12. Experiment Results with Trace-Based Scenarios.

emulation, using both real-world workloads (Sec. 8.2) and

synthetic workloads (Sec. 8.3 - 8.5). We also validate the

emulation with a real deployment.

Metrics: Our key metrics are:

End to end latency (or Latency): Time between a routine’s

submission and its successful completion.

Temporary Incongruence: We measure how much the hu-

man’s experience differs from a world where all routines

ran serially. We take worst case behavior. Before a routine

𝑅 completes, if any other routine 𝑅′
changes the state of

any device 𝑅 modified, we say 𝑅 has suffered a temporary

incongruence event. The plotted Temporary Incongruence
metric measures the fraction of routines that suffer at least

one such temporary incongruence event.

Final Incongruence: Final Incongruence measures the ratio of

runs that end up in an incongruent state.

Parallelism level: This auxiliary metric measures utilization.

It is the number of routines that SafeHome allows concurrent

execution of, averaged during periods of the run when more

than 1 routine is active.

8.2 Experiments with Real-World Benchmarks

We extracted traces from three real homes (20-30 devices,

multi-user families) who were using Google Home, over 2

years. We also studied two public datasets: 1) 147 Smart-

Things applications [69]; and 2) IoTBench: 35 OpenHAB

applications [42]. Based on these, we created three represen-

tative benchmarks (available as part of our software release):

Morning Scenario: This chaotic scenario has 4 family mem-

bers in a 3-bed 2-bath home initiating 29 concurrent routines

over 25 minutes touching 31 devices. Each user starts with a

wake-up routine and ends with a leaving home routine. Inter-

mediate routines cover bedroom & bathroom use, breakfast

cook + eat, and sporadic actions, e.g., milk spillage cleanup.

Party Scenario:Modeling a small party, it includes one long

routine controlling the party atmosphere for the entire run,

along with 11 other routines covering spontaneous events,

e.g., singing time, announcements, serving food/drinks, etc.

Factory Scenario: This is an assembly line with 50 workers

at 50 stages. Each stage has access to local devices, to some

devices shared with immediately preceding and succeeding

stages, and to 5 global devices. Each stage’s routine has device

access probabilities: 0.6 for local devices, 0.3 for neighbor

devices, and 0.1 for global devices. Routines are generated

to keep each worker occupied (no idle time).

We trigger routines at random times while obeying preset

constraints capturing real-life logic, e.g., “wake-up” routine

before “cook breakfast” routine. In the morning scenario,

each routine occurs once per run, and for the factory sce-

nario routines are probabilistically generated (with possible

repetition). We run 1000 trials to obtain each datapoint.

Validating Simulation with Deployment: Fig. 12a’s top

two rows show the morning scenario injected respectively

into: a deployment with SafeHome controlling 31 TP-Link

HS103 devices (top row), and simulation with identical setup

and workload (second row). For all metrics–latency, tempo-

rary incongruence and parallelism level–we find that deploy-

ment and simulation are nearly identical. Across all visibility

models, the area difference between the simulation and de-

ployment CDF curves is at most: 4.8% for latency, 2.2% for

incongruence, and 3.0% for parallelism level. Because simu-

lation results so closely match deployment, we henceforth

rely on simulation to perform flexible and long-duration

experiments.

Results: From Fig. 12a (morning row), in the morning sce-

nario: 1) EV’s latency is comparable to WV at both median

and 95
𝑡ℎ

percentile, and 2) PSV has 15% worse 90
𝑡ℎ

percentile

latency than EV. Generally, the higher the parallelism level
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Name default Description
R 100 Total number of routines

𝜌 100 Number of concurrent routines at a time

C [1, 4], or 4 (ND) Commands per routine

𝛼 0.05 Zipfian coefficient of device popularity

L% 10% Percentage of long running routines

|L | 20 min. Average duration of a long running command (ND)

|S | 10 sec. Average duration of a short running command (ND)

M 100% Percentage of “Must” commands of a routine

N 30 Number of devices

F 40% Percentage of failed devices

Table 3. ParameterizedMicrobenchmark: Summary of
Parameters (Section 8.3). (ND) = Normal distribution.

(last column), the lower the latency. EV’s median parallelism

level is 3× higher than GSV, and median latency 16× better

thanGSV. Parallelism createsmore temporary incongruences

(middle column of figure), as expected for EV. Yet, EV’s (and

GSV’s) end state is serially equivalent while WV may end

incongruently–see Fig. 12b. Thus EV offers similar latencies
as, but better final congruence than, WV.Only if the user cares
about temporary incongruence is PSV preferable.

The party scenario (Fig. 12a (party row)) trends are similar

to the morning scenario, with one exception. PSV’s benefit

is lower, with 11% 90th percentile latency reduction from

GSV (vs. 77% in morning). This is because the single long

routine blocks other routines. EV avoids such head-of-line

blocking because of its pre- and post-leasing.

In Fig. 12a (factory row), the factory scenario shows simi-

lar trends to morning scenario, except that: (i) EV’s median

latency is 23.1% worse than WV, and (ii) the parallelism level

is higher in EV than WV. This is due to the back-to-back ar-

rival of multiple routines. WV executes them as-is. However,

EV may delay some routines (due to device conflicts)–when

the conflict lifts, all eligible routines run simultaneously,

increasing our parallelism level and latency.

8.3 Atomicity Evaluation: Effect of Failures
Next, we run parameterized workload-driven experiments

(Table 3). Default values include 100 routines, and 30 devices.

We pick the number of commands in a routine uniformly

in the range [1, 4]. 10% of routines are long. Each datapoint

is the average of 500K trials. Our open-source repository

provides the exact configurations for all experiments (see

end of this paper for a link).

Fig. 13a and 13b measure the fraction of routines aborted

due to a failure. We induce fail-stop failures, where 40% of

the total devices were marked as failed, each at a random

point during the run. We observe that GSV has the lowest

abort rate because it runs only one routine at a time. S-GSV’s

abort rate is higher because unlike GSV, even a failure of

a device not touched by the current routine will cause an

abort—this is also why S-GSV plateaus at 1%, wherein any
failure aborts the currently running routine. Finally, PSV and

EV have higher abort rates because they parallelly execute

more routines, and thus a failure may affect more routines

compared to GSV or S-GSV.

(a) Must Vs Abort Rate (b) Failure Vs Abort Rate

(c)Must Vs Rollback Overhead (d) Failure Vs Rollback Overhead

Figure 13. Effect of Failures. Rollback Overhead = Intrusion
on User. Parameters in Table 3.

Yet Fig. 13c and 13d show that the rollback overhead of EV
is smallest among all visibility models. We define rollback

overhead as the average fraction of commands rolled back,

averaged across aborted routines. This metric thus captures

the effect of failures on intrusiveness experienced by the user,

per aborted routine. To measure rollback overhead correctly,

we fixed the number of commands/routine C = 4 (this gives

us a fixed denominator). We note here that experiments with

different values of C gave the same trends.

From Fig. 13c and 13d, we observe that PSV’s rollback

overhead is higher than EV because PSV aborts more at

the routine’s finish point (when checking up/down status of

devices touched). EV aborts affected routines earlier (closer to

the failure occurrence) rather than at the routine’s endpoint,

thus avoiding wasted work. GSV and S-GSV had low abort

rates because of their serial execution, but they both have

higher rollback overheads than EV because they roll back

more commands in the affected routines. The plateauing in

Figs. 13c, 13d is due to saturation at abort points: for GSV

at 55%, with S-GSV lower at 46% since any device failure

triggers an abort of the current routine.

Overall, even when execution is serial, the effect of fail-
ures, per aborted routine, can be more intrusive on the human
(GSV, S-GSV, PSV). We conclude that EV is the least intru-

sive model, because it rolls back the fewest commands per

aborted routine.

8.4 Scheduling Policies
Fig. 14 compares FCFS, JiT, and Timeline (TL) scheduling

policies (Sec. 6). In Fig. 14a with 𝜌 = 4 concurrent routines,

for instance, TL is 1.8× and 1.4× faster than FCFS and JiT

respectively. TL’s benefit over: 1) FCFS is due to pre-leasing,

2) over JiT is due to opportunistic use of leasing. TL has

more temporary incongruence but allows more parallelism

(Fig. 14c) than FCFS (1.86× at 𝜌 = 4) and JiT (1.94× 𝜌 = 4).
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(a) E2E Latency (b) Incongruence (c) Parallelism

Figure 14. Scheduling Policies. (a) E2E Latency normal-
ized with routine runtime. (b) Temporary Incongruence. (c)
Parallelism Level.

(a) Normalized E2E Latency (b) Temporary Incongruence (%)

(c) CDF of Stretch Factor
(d) Algo. 1 Insertion Time (Rasp-

berry Pi experiment)

Figure 15. TL Scheduler under EV.

TL Evaluation: Fig. 15a and 15b show that disabling leas-

ing reduces temporary incongruence but increases latency.

Turning off both pre and post leasing increases latency (from
Both-on to Both-off) by 1.5× - 4×. Post-leases are more ef-

fective than pre-leases: disabling the former raises latency

by between 34% to 111%, while disabling the latter raises

latency from between 5% to 74%. Post-leasing opportunities

are more frequent than pre-leasing ones because only the

former does not require changing the serialization order.

Fig. 15c shows stretch factor of TL (Fig. 9c). It is the time

between a routine’s actual start (not submission) and actual

finish, divided by the ideal (minimum) time to run the routine.

With increasing routine size, stretch factor rises at first (at

C = 2 only 5% routines have stretch > 1, vs. 25% at C = 4)

but then drops (15% at C = 8). Essentially the lock-table

saturates beyond a C, creating fewer gaps and forcing EV to

append new routines to the schedule.

We used a Raspberry Pi 3 B+ [59] to run TL as the home

hub (15 devices, 30 routines). Fig. 15d shows it takes only 1ms

to schedule a large routine with 10 commands. Surveys show

typical routines today contain 5 commands or fewer [42, 69],

hence our scheduler is fast in practice.

(a) End to End Latency (b) Parallelism Level (%)

(c) Temporary Incongruence &

Order Mismatch (%) (d)Device Popularity vs. Latency

Figure 16. Impact of Routine size (C) and Device Pop-
ularity (𝛼). In (c), PSV and GSV are always 0 and omitted.

(a) (b)

Figure 17. Impact of: (a) Long Routine duration (|L|),
and (b) Percentage of Long Routines (L%). Order Mis-
match (ordr.) and Temporary Incongruences (incon.).

8.5 Parameterized Microbenchmark Experiments
Commands per routine (C): Fig. 16a, 16b show GSV’s la-

tency rises as routines containmore commands.With smaller

routines, PSV is close to EV and WV, but as routines contain

more commands, PSV quickly approaches GSV. EV stays

faster than GSV and PSV. Parallelism level and temporary

incongruence follow this trend. EV’s peaking and conver-

gence towards GSV (Fig. 16c) occur since beyond a certain

routine size (C=4), pre/post-leasing opportunities decrease.

Device popularity (𝛼): Using a Zipf distribution for device

access by routines, Fig. 16d shows that increasing 𝛼 (popu-

larity skew) causes EV’s latency to stay close to WV. More

conflict slows PSV quickly down to GSV.

Long running routines: As routines become longer (Fig. 17a)

temporary incongruences fall since the run is now longer,

routines are spread temporally, and thus have fewer conflicts.

Raising the number of long routines (L%) increases conflicts

and temporary incongruence. (Fig. 17b). We measure order
mismatch—how much final serialization order differs from

routines’ submission order, by using swap distance. This
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metric: i) rises as routines get longer (Fig. 17a), ii) but falls as

more routines are longer (Fig. 17b), because post-leases dom-

inate. Overall, order mismatch stays low, between 3%-10%.

9 Discussion
Programming Long Routines:While lock leasing allows

natural concurrency of long routines, additional user intents

need either: (i) careful design of routines, or (ii) safety proper-

ties (Section 3.3). An example of (i) is the user’s intention to

design a routine that locks doors at 10 pm and unlocks them

at 8 am. If however the family expects a member to return

late from work or party, then this single routine should be

programmed as two separate routines—one routine at 10 pm

and another routine at 8 am. This way locks are not “held”

through the night, and a prodigal partying child can return

home at midnight and unlock the doors.

Safety Properties with Running Routines: While we

focused on atomicity and visibility, incorporation of safety

raises a few open directions. One concern is the effect of

aborts on safety. For instance, consider the safety predicate

“if stove==ON then exhaust-fan==ON”, and let 𝑅 be the cur-

rent (uncommitted) routine which switched on the exhaust-

fan. If another device touched by 𝑅 fails, then 𝑅 needs to

abort, thus 𝑅’s exhaust-fan command needs to be undone

and exhaust-fan switched off. Let 𝑅′
be the routine which

(last) switched on the stove. Now, to satisfy the safety prop-

erty when 𝑅 aborts, we have two design options—either: (a)

merely switch off the stove, or (b) abort 𝑅′
. Of course either

𝑅′
may have already committed or 𝑅′ = 𝑅; in these com-

mon cases, only action (a) is feasible and straightforward. If

𝑅′(≠ 𝑅) is still uncommitted though, the choice between ac-

tion options (a) and (b) is a tradeoff of intrusiveness vs. user

expectations of correctness. Particularly, intrusiveness arises

because option (b) might cause cascading aborts. For simplic-

ity, SafeHome’s current design prefers option (a), and this

avoids cascading aborts from arising due to safety violations.

Future directions: SafeHome opens up several exciting

new directions that can now be addressed on top of the base

system. SafeHome is the first step towards a smart home

wherein “users control their lives, rather than control indi-

vidual devices (the status quo)” [24, 46]. This means further

ability for users to interrupt, override, and cancel running

routines. Such “sub-atomicity” properties need careful rea-

soning and design. Users may also desire to have notions of

priorities and deadlines for routines. If users require multiple

visibility models to coexist simultaneously within the same

home, careful reasoning is required in the system design

about interactions among visibility models.

10 Related Work
Support for Routines: Routines are supported by Alexa [6],
GoogleHome [30], and others [13, 29, 36]. iRobot’s Imprint [40,

82] supports long-running routines, coordinating between a

vacuum [62] and a mop [17]. All these systems only support

best-effort execution (akin to WV).

Consistency in Smart Homes: SafeHome can be used or-

thogonally with either: i) transactuations [64], which pro-

vides a consistent soft-state, or ii) APEX [86], which ensures

safety by automatically discovering and executing prereq-

uisite commands. These two maintain strict isolation by

sequential routine execution, i.e., they are akin to our PSV.

Abstractions: IFTTT [39] represents the home as a set of

simple conditional statements, while HomeOS [25] provides

a PC-like abstraction for the home where devices are analo-

gous to peripherals in a PC. Beam [65] optimizes resource

utilization by partitioning applications across devices. These

and other abstractions for smart homes [12, 51, 54, 83, 85]

do not address failures or concurrency.

ConcurrencyControl:Concurrency control is well-studied
in databases [15]. Smart Home OSs like HomeOS, SIFT, and

others [25, 48, 52, 61] explore different concurrency control

schemes. However, none of these explore visibility models.

Classical task graph scheduling algorithms [5, 10, 14, 20, 35,

38, 47] do not tackle SafeHome’s specific scheduling problem.

ACID Properties applied in Other Domains: There is a
rich history of leveraging transaction-like ACID properties in

many domains. Examples include work in software-defined

networks to guarantee update consistency [22, 23] and for

robustness [19]. ACID has also been applied in transactional

memory [11, 33, 34, 57], sensor networks [49], and pervasive

computing [70].

11 Conclusion
SafeHome is: (i) the first implementation of relaxed visibility

models for smart homes running concurrent routines, and

(ii) the first system that reasons about failures alongside

concurrent routines. We conclude that:

(1) Eventual Visibility (EV) provides the best of both worlds,

with: a) user-facing responsiveness (latency) only 0%− 23.1%

worse than today’s Weak Visibility (WV), and b) end state

congruence equivalent to the strongest model Global Strict

Visibility (GSV).

(2) When routines abort due to failures, EV rolls back the

fewest commands among all models.

(3) Timeline Scheduling is preferable over FCFS and JiT.

(4) Lock leasing improves latency by 1.5 × −4×.
Source Code: SafeHome source code is available at:
http://dprg.cs.uiuc.edu/downloads.php
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